Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 8: 138, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21070627

RESUMO

BACKGROUND: Polymodal, nociceptive sensory neurons are key cellular elements of the way animals sense aversive and painful stimuli. In Caenorhabditis elegans, the polymodal nociceptive ASH sensory neurons detect aversive stimuli and release glutamate to generate avoidance responses. They are thus useful models for the nociceptive neurons of mammals. While several molecules affecting signal generation and transduction in ASH have been identified, less is known about transmission of the signal from ASH to downstream neurons and about the molecules involved in its modulation. RESULTS: We discovered that the regulator of G protein signalling (RGS) protein, EGL-10, is required for appropriate avoidance responses to noxious stimuli sensed by ASH. As it does for other behaviours in which it is also involved, egl-10 interacts genetically with the G(o)/(i)α protein GOA-1, the G(q)α protein EGL-30 and the RGS EAT-16. Genetic, behavioural and Ca²(+) imaging analyses of ASH neurons in live animals demonstrate that, within ASH, EGL-10 and GOA-1 act downstream of stimulus-evoked signal transduction and of the main transduction channel OSM-9. EGL-30 instead appears to act upstream by regulating Ca²(+) transients in response to aversive stimuli. Analysis of the delay in the avoidance response, of the frequency of spontaneous inversions and of the genetic interaction with the diacylglycerol kinase gene, dgk-1, indicate that EGL-10 and GOA-1 do not affect signal transduction and neuronal depolarization in response to aversive stimuli but act in ASH to modulate downstream transmission of the signal. CONCLUSIONS: The ASH polymodal nociceptive sensory neurons can be modulated not only in their capacity to detect stimuli but also in the efficiency with which they respond to them. The Gα and RGS molecules studied in this work are conserved in evolution and, for each of them, mammalian orthologs can be identified. The discovery of their role in the modulation of signal transduction and signal transmission of nociceptors may help us to understand how pain is generated and how its control can go astray (such as chronic pain) and may suggest new pain control therapies.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Nociceptores/efeitos dos fármacos , Proteínas RGS/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/fisiologia , Cálcio/metabolismo , Cobre , Primers do DNA/genética , Modelos Biológicos , Nociceptores/metabolismo , Quinina , Transmissão Sináptica/fisiologia
2.
Gene ; 395(1-2): 170-6, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17459615

RESUMO

The nematode C. elegans has become an important model for understanding how genes influence behavior. However, in this organism the available approaches for identifying the neuron(s) where the function of a gene is required for a given behavioral trait are time consuming and restricted to non essential genes for which mutants are available. We describe a simple reverse genetics approach for reducing, in chosen C. elegans neurons, the function of genes. The method is based on the expression, under cell specific promoters, of sense and antisense RNA corresponding to a gene of interest. By targeting the genes osm-10, osm-6 and the Green Fluorescent Protein gene, gfp, we show that this approach leads to efficient, heritable and cell autonomous knock-downs of gene function, even in neurons usually refractory to classic RNA interference (RNAi). By targeting the essential and ubiquitously expressed gene, gpb-1, which encodes a G protein beta subunit, we identify for the first time two distinct sets of neurons in which the function of gpb-1 is required to regulate two distinct behaviors: egg-laying and avoidance of repellents. The cell specific knock-downs obtained with this approach provide information that is complementary to that provided by the cell specific rescue of loss-of-function mutations and represents a useful new tool for dissecting the role that genes play in selected neurons.


Assuntos
Caenorhabditis elegans/genética , Neurônios/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Expressão Gênica , Marcação de Genes , Genes de Helmintos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/antagonistas & inibidores , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , RNA Antissenso/genética , RNA de Helmintos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
EMBO J ; 23(5): 1101-11, 2004 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-14988722

RESUMO

An animal's ability to detect and avoid toxic compounds in the environment is crucial for survival. We show that the nematode Caenorhabditis elegans avoids many water-soluble substances that are toxic and that taste bitter to humans. We have used laser ablation and a genetic cell rescue strategy to identify sensory neurons involved in the avoidance of the bitter substance quinine, and found that ASH, a polymodal nociceptive neuron that senses many aversive stimuli, is the principal player in this response. Two G protein alpha subunits GPA-3 and ODR-3, expressed in ASH and in different, nonoverlapping sets of sensory neurons, are necessary for the response to quinine, although the effect of odr-3 can only be appreciated in the absence of gpa-3. We identified and cloned a new gene, qui-1, necessary for quinine and SDS avoidance. qui-1 codes for a novel protein with WD-40 domains and which is expressed in the avoidance sensory neurons ASH and ADL.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Neurônios/metabolismo , Quinina/farmacologia , Paladar/efeitos dos fármacos , Paladar/fisiologia , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/genética , Dados de Sequência Molecular , Mutação/genética , Neurônios/citologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fenótipo , Subunidades Proteicas/metabolismo , Quinina/metabolismo , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA