Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(7): e10321, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37465611

RESUMO

This study assessed the impact of altitude, precipitation, and soil conditions on species richness (SR), phylogenetic diversity (PD), and functional diversity (FD) standardized effect sizes in subtropical Brazilian Atlantic Forest tree communities. We considered specific trait information (FDs) for FD, reflecting recent adaptive evolution, contrasting with deeper phylogenetic constraints in FD. Three functional traits (leaf area-LA, wood density-WD, and seed mass-SM) were examined for their response to these gradients. Generalized least squares models with environmental variables as predictors and diversity metrics as response variables were used, and a fourth-corner correlation test explored trait-environmental relationships. SR decreased with altitude, while PD increased, indicating niche convergence at higher altitudes. Leaf area and seed mass diversity also decreased with altitude. For LA, both FD and FDs were significant, reflecting filtering processes influenced by phylogenetic inheritance and recent trait evolution. For SM, only the specific trait structure responded to altitude. LA and SM showed significant trait-environmental relationships, with smaller-leaved and lighter-seeded species dominant at higher altitudes. Soil gradients affect diversity. Fertile soils have a wider range of LA, indicating coexistence of species with different nutrient acquisition strategies. WD variation is lower for FDs. SM diversity has different relationships with soil fertility for FDs and FD, suggesting phylogeny influences trait variation. Soil pH influences WD and LA under acidic soils, with deeper phylogenetic constraints (FD). Environmental factors impact tree communities, with evidence of trait variation constraints driven by conditions and resources. Subtropical Atlantic forests' tree assemblies are mainly influenced by altitude, pH, and soil fertility, selecting fewer species and narrower trait spectra under specific conditions (e.g., higher altitudes, pH). Functional diversity patterns reflect both phylogenetic and recent evolution constraints, with varying strength across traits and conditions. These findings highlight the intricate processes shaping long-lived species assembly across diverse environments in the Southern Brazilian Atlantic Forest.

2.
PLoS One ; 9(8): e105043, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25121495

RESUMO

Phylobetadiversity is defined as the phylogenetic resemblance between communities or biomes. Analyzing phylobetadiversity patterns among different vegetation physiognomies within a single biome is crucial to understand the historical affinities between them. Based on the widely accepted idea that different forest physiognomies within the Southern Brazilian Atlantic Forest constitute different facies of a single biome, we hypothesize that more recent phylogenetic nodes should drive phylobetadiversity gradients between the different forest types within the Atlantic Forest, as the phylogenetic divergence among those forest types is biogeographically recent. We compiled information from 206 checklists describing the occurrence of shrub/tree species across three different forest physiognomies within the Southern Brazilian Atlantic Forest (Dense, Mixed and Seasonal forests). We analyzed intra-site phylogenetic structure (phylogenetic diversity, net relatedness index and nearest taxon index) and phylobetadiversity between plots located at different forest types, using five different methods differing in sensitivity to either basal or terminal nodes (phylogenetic fuzzy weighting, COMDIST, COMDISTNT, UniFrac and Rao's H). Mixed forests showed higher phylogenetic diversity and overdispersion than the other forest types. Furthermore, all forest types differed from each other in relation phylobetadiversity patterns, particularly when phylobetadiversity methods more sensitive to terminal nodes were employed. Mixed forests tended to show higher phylogenetic differentiation to Dense and Seasonal forests than these latter from each other. The higher phylogenetic diversity and phylobetadiversity levels found in Mixed forests when compared to the others likely result from the biogeographical origin of several taxa occurring in these forests. On one hand, Mixed forests shelter several temperate taxa, like the conifers Araucaria and Podocarpus. On the other hand, tropical groups, like Myrtaceae, are also very representative of this forest type. We point out to the need of more attention to Mixed forests as a conservation target within the Brazilian Atlantic Forest given their high phylogenetic uniqueness.


Assuntos
Biodiversidade , Filogenia , Árvores/classificação , Brasil , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...