Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 539
Filtrar
1.
Neurosurgery ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712941

RESUMO

BACKGROUND AND OBJECTIVES: Direct cortical stimulation (DCS) mapping enables the identification of functional language regions within and around gliomas before tumor resection. Intraoperative mapping is required because glioma-infiltrated cortex engages in synchronous activity during task performance in a manner similar to normal-appearing cortex but has decreased ability to encode information for complex tasks. It is unknown whether task complexity influenced DCS mapping results. We aim to understand correlations between audiovisual picture naming (PN) task complexity and DCS error rate. We also asked what functional and oncological factors might be associated with higher rates of erroneous responses. METHODS: We retrospectively reviewed intraoperative PN and word reading (WR) task performance during awake DCS language mapping for resection of dominant hemisphere World Health Organization grade 2 to 4 gliomas. The complexity of word tested in PN/WR tasks, patient characteristics, and tumor characteristics were compared between correct and incorrect trials. RESULTS: Between 2017 and 2021, 74 patients met inclusion criteria. At median 18.6 months of follow-up, 73.0% were alive and 52.7% remained recurrence-free. A total of 2643 PN and 978 WR trials were analyzed. A greater number of syllables in PN was associated with a higher DCS error rate (P = .001). Multivariate logistic regression found that each additional syllable in PN tasks independently increased odds of error by 2.40 (P < .001). Older age was also an independent correlate of higher error rate (P < .043). World Health Organization grade did not correlate with error rate (P = .866). More severe language impairment before surgery correlated with worse performance on more complex intraoperative tasks (P < .001). A higher error rate on PN testing did not correlate with lower extent of glioma resection (P = .949). CONCLUSION: Word complexity, quantified by the number of syllables, is associated with higher error rates for intraoperative PN tasks but does not affect extent of resection.

2.
Mod Pathol ; 37(6): 100488, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588881

RESUMO

Biomarker-driven therapeutic clinical trials require the implementation of standardized, evidence-based practices for sample collection. In diffuse glioma, phosphatidylinositol 3 (PI3)-kinase/AKT/mTOR (PI3/AKT/mTOR) signaling is an attractive therapeutic target for which window-of-opportunity clinical trials could facilitate the identification of promising new agents. Yet, the relevant preanalytic variables and optimal tumor sampling methods necessary to measure pathway activity are unknown. To address this, we used a murine model for isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) and human tumor tissue, including IDH-wildtype GBM and IDH-mutant diffuse glioma. First, we determined the impact of delayed time-to-formalin fixation, or cold ischemia time (CIT), on the quantitative assessment of cellular expression of 6 phosphoproteins that are readouts of PI3K/AK/mTOR activity (phosphorylated-proline-rich Akt substrate of 40 kDa (p-PRAS40, T246), -mechanistic target of rapamycin (p-mTOR; S2448); -AKT (p-AKT, S473); -ribosomal protein S6 (p-RPS6, S240/244 and S235/236), and -eukaryotic initiation factor 4E-binding protein 1 (p-4EBP1, T37/46). With CITs ≥ 2 hours, typical of routine clinical handling, all had reduced or altered expression with p-RPS6 (S240/244) exhibiting relatively greater stability. A similar pattern was observed using patient tumor samples from the operating room with p-4EBP1 more sensitive to delayed fixation than p-RPS6 (S240/244). Many clinical trials utilize unstained slides for biomarker evaluation. Thus, we evaluated the impact of slide storage conditions on the detection of p-RPS6 (S240/244), p-4EBP1, and p-AKT. After 5 months, storage at -80°C was required to preserve the expression of p-4EBP1 and p-AKT, whereas p-RPS6 (240/244) expression was not stable regardless of storage temperature. Biomarker heterogeneity impacts optimal tumor sampling. Quantification of p-RPS6 (240/244) expression in multiple regionally distinct human tumor samples from 8 patients revealed significant intratumoral heterogeneity. Thus, the accurate assessment of PI3K/AKT/mTOR signaling in diffuse glioma must overcome intratumoral heterogeneity and multiple preanalytic factors, including time-to-formalin fixation, slide storage conditions, and phosphoprotein of interest.

3.
J Neurooncol ; 168(1): 77-89, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492191

RESUMO

PURPOSE: Aggressive resection in surgically-accessible glioblastoma (GBM) correlates with improved survival over less extensive resections. However, the clinical impact of performing a biopsy before definitive resection have not been previously evaluated. METHODS: We analyzed 17,334 GBM patients from the NCDB from 2010-2014. We categorized them into: "upfront resection" and "biopsy followed by resection". The outcomes of interes included OS, 30-day readmission/mortality, 90-day mortality, and length of hospital stay (LOS). The Kaplan-Meier methods and accelerated failure time (AFT) models were applied for survival analysis. Multivariable binary logistic regression were performed to compare differences among groups. Multiple imputation and propensity score matching (PSM) were conducted for validation. RESULTS: "Upfront resection" had superior OS over "biopsy followed by resection" (median OS:12.4 versus 11.1 months, log-rank p = 0.001). Similarly, multivariable AFT models favored "upfront resection" (time ratio[TR]:0.83, 95%CI: 0.75-0.93, p = 0.001). Patients undergoing "upfront gross-total resection (GTR)" had higher OS over "upfront subtotal resection (STR)", "GTR following STR", and "GTR or STR following initial biopsy" (14.4 vs. 10.3, 13.5, 13.3, and 9.1 months;TR: 1.00 [Ref.], 0.75, 0.82, 0.88, and 0.67). Recent years of diagnosis, higher income, facilities located in Southern regions, and treatment at academic facilities were significantly associated with the higher likelihood of undergoing upfront resection. Multivariable regression showed a decreased 30 and 90-day mortality for patients undergoing "upfront resection", 73% and 44%, respectively (p < 0.001). CONCLUSIONS: Pre-operative biopsies for surgically accessible GBM are associated with worse survival despite subsequent resection compared to patients undergoing upfront resection.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/cirurgia , Glioblastoma/patologia , Glioblastoma/mortalidade , Feminino , Masculino , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/mortalidade , Pessoa de Meia-Idade , Biópsia , Idoso , Procedimentos Neurocirúrgicos/métodos , Bases de Dados Factuais , Adulto , Tempo de Internação/estatística & dados numéricos
4.
J Natl Cancer Inst ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427849

RESUMO

The US National Cancer Act of 1971 designated the director of the National Cancer Institute as responsible for coordinating federal agencies and nonfederal organizations to make progress against cancer. As part of her role, the immediate past director of the National Cancer Institute (MMB) led the development of a National Cancer Plan that was formally released on April 3, 2023. The plan includes 8 aspirational goals "to achieve a society where every person with cancer lives a full and active life and to prevent most cancers so that few people need to face this diagnosis." Research findings provide a foundation for each goal, and research gaps are included in the strategies for meeting each goal. The President's Cancer Panel, also created by the National Cancer Act, conducted an initial assessment of progress toward the plan goals by hearing from 12 organizations at a virtual public meeting on September 7, 2023. The purpose of this commentary is to orient the scientific community to the plan and call attention to related knowledge gaps that could benefit from research.

5.
Cell ; 187(2): 446-463.e16, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242087

RESUMO

Treatment failure for the lethal brain tumor glioblastoma (GBM) is attributed to intratumoral heterogeneity and tumor evolution. We utilized 3D neuronavigation during surgical resection to acquire samples representing the whole tumor mapped by 3D spatial coordinates. Integrative tissue and single-cell analysis revealed sources of genomic, epigenomic, and microenvironmental intratumoral heterogeneity and their spatial patterning. By distinguishing tumor-wide molecular features from those with regional specificity, we inferred GBM evolutionary trajectories from neurodevelopmental lineage origins and initiating events such as chromothripsis to emergence of genetic subclones and spatially restricted activation of differential tumor and microenvironmental programs in the core, periphery, and contrast-enhancing regions. Our work depicts GBM evolution and heterogeneity from a 3D whole-tumor perspective, highlights potential therapeutic targets that might circumvent heterogeneity-related failures, and establishes an interactive platform enabling 360° visualization and analysis of 3D spatial patterns for user-selected genes, programs, and other features across whole GBM tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Modelos Biológicos , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Epigenômica , Genômica , Glioblastoma/genética , Glioblastoma/patologia , Análise de Célula Única , Microambiente Tumoral , Heterogeneidade Genética
7.
Nat Commun ; 15(1): 476, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216587

RESUMO

Mechanisms specifying cancer cell states and response to therapy are incompletely understood. Here we show epigenetic reprogramming shapes the cellular landscape of schwannomas, the most common tumors of the peripheral nervous system. We find schwannomas are comprised of 2 molecular groups that are distinguished by activation of neural crest or nerve injury pathways that specify tumor cell states and the architecture of the tumor immune microenvironment. Moreover, we find radiotherapy is sufficient for interconversion of neural crest schwannomas to immune-enriched schwannomas through epigenetic and metabolic reprogramming. To define mechanisms underlying schwannoma groups, we develop a technique for simultaneous interrogation of chromatin accessibility and gene expression coupled with genetic and therapeutic perturbations in single-nuclei. Our results elucidate a framework for understanding epigenetic drivers of tumor evolution and establish a paradigm of epigenetic and metabolic reprograming of cancer cells that shapes the immune microenvironment in response to radiotherapy.


Assuntos
Neurilemoma , Humanos , Neurilemoma/genética , Neurilemoma/patologia , Epigênese Genética , Reprogramação Celular/genética , Microambiente Tumoral/genética
8.
Neuro Oncol ; 26(2): 335-347, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-37758193

RESUMO

BACKGROUND: Central nervous system (CNS) WHO grade 2 low-grade glioma (LGG) patients are at high risk for recurrence and with unfavorable long-term prognosis due to the treatment resistance and malignant transformation to high-grade glioma. Considering the relatively intact systemic immunity and slow-growing nature, immunotherapy may offer an effective treatment option for LGG patients. METHODS: We conducted a prospective, randomized pilot study to evaluate the safety and immunological response of the multipeptide IMA950 vaccine with agonistic anti-CD27 antibody, varlilumab, in CNS WHO grade 2 LGG patients. Patients were randomized to receive combination therapy with IMA950 + poly-ICLC and varlilumab (Arm 1) or IMA950 + poly-ICLC (Arm 2) before surgery, followed by adjuvant vaccines. RESULTS: A total of 14 eligible patients were enrolled in the study. Four patients received pre-surgery vaccines but were excluded from postsurgery vaccines due to the high-grade diagnosis of the resected tumor. No regimen-limiting toxicity was observed. All patients demonstrated a significant increase of anti-IMA950 CD8+ T-cell response postvaccine in the peripheral blood, but no IMA950-reactive CD8+ T cells were detected in the resected tumor. Mass cytometry analyses revealed that adding varlilumab promoted T helper type 1 effector memory CD4+ and effector memory CD8+ T-cell differentiation in the PBMC but not in the tumor microenvironment. CONCLUSION: The combinational immunotherapy, including varlilumab, was well-tolerated and induced vaccine-reactive T-cell expansion in the peripheral blood but without a detectable response in the tumor. Further developments of strategies to overcome the blood-tumor barrier are warranted to improve the efficacy of immunotherapy for LGG patients.


Assuntos
Anticorpos Monoclonais Humanizados , Vacinas Anticâncer , Glioma , Peptídeos , Humanos , Projetos Piloto , Leucócitos Mononucleares , Estudos Prospectivos , Glioma/tratamento farmacológico , Diferenciação Celular , Microambiente Tumoral
9.
J Neurosurg ; 140(4): 1029-1037, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856395

RESUMO

OBJECTIVE: Maximal safe resection of gliomas near motor pathways is facilitated by intraoperative mapping. Here, the authors review their results with triple-modality asleep motor mapping with motor evoked potentials and bipolar and monopolar stimulation for cortical and subcortical mapping during glioma surgery in an expanded cohort. METHODS: This was a retrospective analysis of patients who underwent resection of a perirolandic glioma near motor pathways. Clinical and neuromonitoring data were extracted from the electronic medical records for review. All patients with new or worsened postoperative motor deficits were followed for at least 6 months. Regression analyses were performed to assess factors associated with a persistent motor deficit. RESULTS: Between January 2018 and December 2021, 160 operations were performed in 151 patients with perirolandic glioma. Sixty-four patients (40%) had preoperative motor deficits, and the median extent of resection was 98%. Overall, patients in 38 cases (23.8%) had new or worse immediate postoperative deficits by discharge, and persistent deficits by 6 months were seen in 6 cases (3.8%), all in patients with high-grade gliomas. There were no new persistent deficits in low-grade glioma patients (0%). The risk factors for a persistent deficit included an insular tumor component (OR 8.6, p = 0.01), preoperative motor weakness (OR 8.1, p = 0.03), intraoperative motor evoked potential (MEP) changes (OR 36.5, p < 0.0001), and peri-resection cavity ischemia (OR 7.5, p = 0.04). Most persistent deficits were attributable to ischemic injury despite structural preservation of the descending motor tracts. For patients with persistent motor deficits, there were 3 cases (50%) in which a change in MEP was noted but subsequent subcortical monopolar stimulation still elicited a response in the corresponding muscle groups, suggesting axonal activation distal to a point of injury. CONCLUSIONS: Asleep triple motor mapping results in a low rate of permanent deficits, especially for low-grade gliomas. Peri-resection cavity ischemia continues to be a significant risk factor for permanent deficit despite maintaining appropriate distance for subcortical tracts based on monopolar feedback.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/patologia , Estudos Retrospectivos , Monitorização Intraoperatória/métodos , Mapeamento Encefálico/métodos , Glioma/patologia , Isquemia/cirurgia , Potencial Evocado Motor/fisiologia
10.
J Neurosurg ; 140(1): 10-17, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37410629

RESUMO

OBJECTIVE: Risk-standardized mortality rates (RSMRs) have recently been shown to outperform facility case volume as a proxy for surgical quality in lung and gastrointestinal cancer. The aim of this study was to investigate RSMR as a surgical quality metric in primary CNS cancer. METHODS: This retrospective observational cohort study used data from the National Cancer Database, a population-based oncology outcomes database sourced from more than 1500 institutions in the United States, and included adult patients 18 years of age and older who were diagnosed with glioblastoma, pituitary adenoma, or meningioma and were treated with surgery. For each group, RSMR quintiles and annual volume were calculated in a training set (2009-2013) and these thresholds were applied to the validation set (2014-2018). In this paper, the authors compared the effectiveness and efficiency of facility volume-based versus RSMR-based hospital centralization models and evaluated the overlap between the two systems. A patterns-of-care analysis was also performed to explore socioeconomic predictors of being treated at better-performing treating facilities. RESULTS: A total of 37,838 meningioma, 21,189 pituitary adenoma, and 30,788 glioblastoma patients were surgically treated from 2014 to 2018. There were substantial differences between RSMR and facility volume classification schemes among all tumor types. In an RSMR-based centralization model, an average of 36 patients undergoing glioblastoma surgery would need to relocate to a low-mortality hospital to prevent one 30-day mortality following surgery, whereas 46 would need to relocate to a high-volume hospital. For pituitary adenoma and meningioma, both metrics were inefficient in centralizing care to reduce surgical mortality. Additionally, overall survival for glioblastoma patients was better modeled in an RSMR classification scheme. Analyses to investigate the impact of care disparities found that Black and Hispanic patients, patients earning less than $38,000, and uninsured patients were more likely to be treated at high-mortality hospitals. CONCLUSIONS: RSMR is more effective and efficient than a traditional volume-based approach for preventing early postoperative death in glioblastoma surgery. These data have important implications for future quality-related studies in neurosurgical oncology and may be relevant for healthcare/insurance payments, hospital evaluation assessments, healthcare disparities, and the standardization of care across hospitals.


Assuntos
Glioblastoma , Neoplasias Meníngeas , Meningioma , Neoplasias Hipofisárias , Adulto , Humanos , Estados Unidos/epidemiologia , Adolescente , Estudos Retrospectivos , Indicadores de Qualidade em Assistência à Saúde , Mortalidade Hospitalar
11.
J Neurosurg ; 140(1): 80-93, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37382331

RESUMO

OBJECTIVE: Maximal safe resection is the standard of care for patients presenting with lesions concerning for glioblastoma (GBM) on magnetic resonance imaging (MRI). Currently, there is no consensus on surgical urgency for patients with an excellent performance status, which complicates patient counseling and may increase patient anxiety. This study aims to assess the impact of time to surgery (TTS) on clinical and survival outcomes in patients with GBM. METHODS: This is a retrospective study of 145 consecutive patients with newly diagnosed IDH-wild-type GBM who underwent initial resection at the University of California, San Francisco, between 2014 and 2016. Patients were grouped according to the time from diagnostic MRI to surgery (i.e., TTS): ≤ 7, > 7-21, and > 21 days. Contrast-enhancing tumor volumes (CETVs) were measured using software. Initial CETV (CETV1) and preoperative CETV (CETV2) were used to evaluate tumor growth represented as percent change (ΔCETV) and specific growth rate (SPGR; % growth/day). Overall survival (OS) and progression-free survival (PFS) were measured from the date of resection and were analyzed using the Kaplan-Meier method and Cox regression analyses. RESULTS: Of the 145 patients (median TTS 10 days), 56 (39%), 53 (37%), and 36 (25%) underwent surgery ≤ 7, > 7-21, and > 21 days from initial imaging, respectively. Median OS and PFS among the study cohort were 15.5 and 10.3 months, respectively, and did not differ among the TTS groups (p = 0.81 and 0.17, respectively). Median CETV1 was 35.9, 15.7, and 10.2 cm3 across the TTS groups, respectively (p < 0.001). Preoperative biopsy and presenting to an outside hospital emergency department were associated with an average 12.79-day increase and 9.09-day decrease in TTS, respectively. Distance from the treating facility (median 57.19 miles) did not affect TTS. In the growth cohort, TTS was associated with an average 2.21% increase in ΔCETV per day; however, there was no effect of TTS on SPGR, Karnofsky Performance Status (KPS), postoperative deficits, survival, discharge location, or hospital length of stay. Subgroup analyses did not identify any high-risk groups for which a shorter TTS may be beneficial. CONCLUSIONS: An increased TTS for patients with imaging concerning for GBM did not impact clinical outcomes, and while there was a significant association with ΔCETV, SPGR remained unaffected. However, SPGR was associated with a worse preoperative KPS, which highlights the importance of tumor growth speed over TTS. Therefore, while it is ill advised to wait an unnecessarily long time after initial imaging studies, these patients do not require urgent/emergency surgery and can seek tertiary care opinions and/or arrange for additional preoperative support/resources. Future studies are needed to explore subgroups for whom TTS may impact clinical outcomes.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Glioblastoma/tratamento farmacológico , Estudos Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Procedimentos Neurocirúrgicos/métodos , Imageamento por Ressonância Magnética
12.
Neuro Oncol ; 26(1): 166-177, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37665776

RESUMO

BACKGROUND: Resection of the contrast-enhancing (CE) tumor represents the standard of care in newly diagnosed glioblastoma. However, some tumors ultimately diagnosed as glioblastoma lack contrast enhancement and have a 'low-grade appearance' on imaging (non-CE glioblastoma). We aimed to (a) volumetrically define the value of non-CE tumor resection in the absence of contrast enhancement, and to (b) delineate outcome differences between glioblastoma patients with and without contrast enhancement. METHODS: The RANO resect group retrospectively compiled a global, eight-center cohort of patients with newly diagnosed glioblastoma per WHO 2021 classification. The associations between postoperative tumor volumes and outcome were analyzed. Propensity score-matched analyses were constructed to compare glioblastomas with and without contrast enhancement. RESULTS: Among 1323 newly diagnosed IDH-wildtype glioblastomas, we identified 98 patients (7.4%) without contrast enhancement. In such patients, smaller postoperative tumor volumes were associated with more favorable outcome. There was an exponential increase in risk for death with larger residual non-CE tumor. Accordingly, extensive resection was associated with improved survival compared to lesion biopsy. These findings were retained on a multivariable analysis adjusting for demographic and clinical markers. Compared to CE glioblastoma, patients with non-CE glioblastoma had a more favorable clinical profile and superior outcome as confirmed in propensity score analyses by matching the patients with non-CE glioblastoma to patients with CE glioblastoma using a large set of clinical variables. CONCLUSIONS: The absence of contrast enhancement characterizes a less aggressive clinical phenotype of IDH-wildtype glioblastomas. Maximal resection of non-CE tumors has prognostic implications and translates into favorable outcome.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Glioblastoma/patologia , Estudos Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Prognóstico , Imageamento por Ressonância Magnética/métodos
13.
J Neurosurg ; 140(2): 328-337, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37548547

RESUMO

OBJECTIVE: The relationship between brain metastasis resection and risk of nodular leptomeningeal disease (nLMD) is unclear. This study examined genomic alterations found in brain metastases with the aim of identifying alterations associated with postoperative nLMD in the context of clinical and treatment factors. METHODS: A retrospective, single-center study was conducted on patients who underwent resection of brain metastases between 2014 and 2022 and had clinical and genomic data available. Postoperative nLMD was the primary endpoint of interest. Targeted next-generation sequencing of > 500 oncogenes was performed in brain metastases. Cox proportional hazards analyses were performed to identify clinical features and genomic alterations associated with nLMD. RESULTS: The cohort comprised 101 patients with tumors originating from multiple cancer types. There were 15 patients with nLMD (14.9% of the cohort) with a median time from surgery to nLMD diagnosis of 8.2 months. Two supervised machine learning algorithms consistently identified CDKN2A/B codeletion and ERBB2 amplification as the top predictors associated with postoperative nLMD across all cancer types. In a multivariate Cox proportional hazards analysis including clinical factors and genomic alterations observed in the cohort, tumor volume (× 10 cm3; HR 1.2, 95% CI 1.01-1.5; p = 0.04), CDKN2A/B codeletion (HR 5.3, 95% CI 1.7-16.9; p = 0.004), and ERBB2 amplification (HR 3.9, 95% CI 1.1-14.4; p = 0.04) were associated with a decreased time to postoperative nLMD. CONCLUSIONS: In addition to increased resected tumor volume, ERBB2 amplification and CDKN2A/B deletion were independently associated with an increased risk of postoperative nLMD across multiple cancer types. Additional work is needed to determine if targeted therapy decreases this risk in the postoperative setting.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Humanos , Resultado do Tratamento , Estudos Retrospectivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/secundário , Genômica
14.
bioRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645893

RESUMO

Tumors may contain billions of cells including distinct malignant clones and nonmalignant cell types. Clarifying the evolutionary histories, prevalence, and defining molecular features of these cells is essential for improving clinical outcomes, since intratumoral heterogeneity provides fuel for acquired resistance to targeted therapies. Here we present a statistically motivated strategy for deconstructing intratumoral heterogeneity through multiomic and multiscale analysis of serial tumor sections (MOMA). By combining deep sampling of IDH-mutant astrocytomas with integrative analysis of single-nucleotide variants, copy-number variants, and gene expression, we reconstruct and validate the phylogenies, spatial distributions, and transcriptional profiles of distinct malignant clones. By genotyping nuclei analyzed by single-nucleus RNA-seq for truncal mutations, we further show that commonly used algorithms for identifying cancer cells from single-cell transcriptomes may be inaccurate. We also demonstrate that correlating gene expression with tumor purity in bulk samples can reveal optimal markers of malignant cells and use this approach to identify a core set of genes that is consistently expressed by astrocytoma truncal clones, including AKR1C3, whose expression is associated with poor outcomes in several types of cancer. In summary, MOMA provides a robust and flexible strategy for precisely deconstructing intratumoral heterogeneity and clarifying the core molecular properties of distinct cellular populations in solid tumors.

15.
J Neurosurg ; 140(4): 1001-1007, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37877997

RESUMO

OBJECTIVE: Intraventricular meningiomas (IVMs) of the lateral ventricle are rare tumors that present surgical challenges because of their deep location. Visual field deficits (VFDs) are one risk associated with these tumors and their treatment. VFDs may be present preoperatively due to the tumor and mass effect (tumor VFDs) or may develop postoperatively due to the surgical approach (surgical VFDs). This institutional series aimed to review surgical outcomes following resection of IVMs, with a focus on VFDs. METHODS: Patients who received IVM resection at one academic institution between the years 1996 and 2021 were retrospectively reviewed. Diffusion tensor imaging (DTI) reconstructions of the optic radiations around the tumor were performed from preoperative IVM imaging. The VFD course and resolution were documented. RESULTS: Thirty-two adult patients underwent IVM resection, with gross-total resection in 30 patients (93.8%). Preoperatively, tumor VFDs were present in 6 patients, resolving after surgery in 5 patients. Five other patients (without preoperative VFD) had new persistent surgical VFDs postoperatively (5/32, 15.6%) that persisted to the most recent follow-up. Of the 5 patients with persistent surgical VFDs, 4 received a transtemporal approach and 1 received a transparietal approach, and all these deficits occurred prior to regular use of DTI in preoperative imaging. CONCLUSIONS: New surgical VFDs are a common neurological deficit after IVM resection. Preoperative DTI may demonstrate distortion of the optic radiations around the tumor, thus revealing safe operative corridors to prevent surgical VFDs.


Assuntos
Neoplasias Meníngeas , Meningioma , Adulto , Humanos , Meningioma/diagnóstico por imagem , Meningioma/cirurgia , Meningioma/patologia , Imagem de Tensor de Difusão , Estudos Retrospectivos , Campos Visuais , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/cirurgia , Resultado do Tratamento
16.
Neuro Oncol ; 26(4): 640-652, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141254

RESUMO

BACKGROUND: The TERT promoter mutation (TPM) is acquired in most IDH-wildtype glioblastomas (GBM) and IDH-mutant oligodendrogliomas (OD) enabling tumor cell immortality. Previous studies on TPM clonality show conflicting results. This study was performed to determine whether TPM is clonal on a tumor-wide scale. METHODS: We investigated TPM clonality in relation to presumed early events in 19 IDH-wildtype GBM and 10 IDH-mutant OD using 3-dimensional comprehensive tumor sampling. We performed Sanger sequencing on 264 tumor samples and deep amplicon sequencing on 187 tumor samples. We obtained tumor purity and copy number estimates from whole exome sequencing. TERT expression was assessed by RNA-seq and RNAscope. RESULTS: We detected TPM in 100% of tumor samples with quantifiable tumor purity (219 samples). Variant allele frequencies (VAF) of TPM correlate positively with chromosome 10 loss in GBM (R = 0.85), IDH1 mutation in OD (R = 0.87), and with tumor purity (R = 0.91 for GBM; R = 0.90 for OD). In comparison, oncogene amplification was tumor-wide for MDM4- and most EGFR-amplified cases but heterogeneous for MYCN and PDGFRA, and strikingly high in low-purity samples. TPM VAF was moderately correlated with TERT expression (R = 0.52 for GBM; R = 0.65 for OD). TERT expression was detected in a subset of cells, solely in TPM-positive samples, including samples equivocal for tumor. CONCLUSIONS: On a tumor-wide scale, TPM is among the earliest events in glioma evolution. Intercellular heterogeneity of TERT expression, however, suggests dynamic regulation during tumor growth. TERT expression may be a tumor cell-specific biomarker.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Oligodendroglioma , Telomerase , Humanos , Neoplasias Encefálicas/patologia , Glioma/patologia , Glioblastoma/genética , Glioblastoma/patologia , Oligodendroglioma/genética , Mutação , Biomarcadores Tumorais/genética , Isocitrato Desidrogenase/genética , Telomerase/genética , Proteínas Proto-Oncogênicas/genética , Proteínas de Ciclo Celular/genética
17.
Acta Neuropathol ; 147(1): 3, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079020

RESUMO

Glioblastoma is a clinically and molecularly heterogeneous disease, and new predictive biomarkers are needed to identify those patients most likely to respond to specific treatments. Through prospective genomic profiling of 459 consecutive primary treatment-naïve IDH-wildtype glioblastomas in adults, we identified a unique subgroup (2%, 9/459) defined by somatic hypermutation and DNA replication repair deficiency due to biallelic inactivation of a canonical mismatch repair gene. The deleterious mutations in mismatch repair genes were often present in the germline in the heterozygous state with somatic inactivation of the remaining allele, consistent with glioblastomas arising due to underlying Lynch syndrome. A subset of tumors had accompanying proofreading domain mutations in the DNA polymerase POLE and resultant "ultrahypermutation". The median age at diagnosis was 50 years (range 27-78), compared with 63 years for the other 450 patients with conventional glioblastoma (p < 0.01). All tumors had histologic features of the giant cell variant of glioblastoma. They lacked EGFR amplification, lacked combined trisomy of chromosome 7 plus monosomy of chromosome 10, and only rarely had TERT promoter mutation or CDKN2A homozygous deletion, which are hallmarks of conventional IDH-wildtype glioblastoma. Instead, they harbored frequent inactivating mutations in TP53, NF1, PTEN, ATRX, and SETD2 and recurrent activating mutations in PDGFRA. DNA methylation profiling revealed they did not align with known reference adult glioblastoma methylation classes, but instead had unique globally hypomethylated epigenomes and mostly classified as "Diffuse pediatric-type high grade glioma, RTK1 subtype, subclass A". Five patients were treated with immune checkpoint blockade, four of whom survived greater than 3 years. The median overall survival was 36.8 months, compared to 15.5 months for the other 450 patients (p < 0.001). We conclude that "De novo replication repair deficient glioblastoma, IDH-wildtype" represents a biologically distinct subtype in the adult population that may benefit from prospective identification and treatment with immune checkpoint blockade.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Criança , Pessoa de Meia-Idade , Idoso , Glioblastoma/genética , Glioblastoma/patologia , Inibidores de Checkpoint Imunológico , Homozigoto , Estudos Prospectivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Deleção de Sequência , Mutação/genética , Isocitrato Desidrogenase/genética
18.
Brain Sci ; 13(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38137085

RESUMO

Gliomas are infiltrative brain tumors that often involve functional tissue. While maximal safe resection is critical for maximizing survival, this is challenged by the difficult intraoperative discrimination between tumor-infiltrated and normal structures. Surgical expertise is essential for identifying safe margins, and while the intraoperative pathological review of frozen tissue is possible, this is a time-consuming task. Advances in intraoperative stimulation mapping have aided surgeons in identifying functional structures and, as such, has become the gold standard for this purpose. However, intraoperative margin assessment lacks a similar consensus. Nonetheless, recent advances in intraoperative imaging techniques and tissue examination methods have demonstrated promise for the accurate and efficient assessment of tumor infiltration and margin delineation within the operating room, respectively. In this review, we describe these innovative technologies that neurosurgeons should be aware of.

19.
Nat Med ; 29(12): 3067-3076, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944590

RESUMO

Surgery is the mainstay of treatment for meningioma, the most common primary intracranial tumor, but improvements in meningioma risk stratification are needed and indications for postoperative radiotherapy are controversial. Here we develop a targeted gene expression biomarker that predicts meningioma outcomes and radiotherapy responses. Using a discovery cohort of 173 meningiomas, we developed a 34-gene expression risk score and performed clinical and analytical validation of this biomarker on independent meningiomas from 12 institutions across 3 continents (N = 1,856), including 103 meningiomas from a prospective clinical trial. The gene expression biomarker improved discrimination of outcomes compared with all other systems tested (N = 9) in the clinical validation cohort for local recurrence (5-year area under the curve (AUC) 0.81) and overall survival (5-year AUC 0.80). The increase in AUC compared with the standard of care, World Health Organization 2021 grade, was 0.11 for local recurrence (95% confidence interval 0.07 to 0.17, P < 0.001). The gene expression biomarker identified meningiomas benefiting from postoperative radiotherapy (hazard ratio 0.54, 95% confidence interval 0.37 to 0.78, P = 0.0001) and suggested postoperative management could be refined for 29.8% of patients. In sum, our results identify a targeted gene expression biomarker that improves discrimination of meningioma outcomes, including prediction of postoperative radiotherapy responses.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Biomarcadores , Perfilação da Expressão Gênica , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/radioterapia , Neoplasias Meníngeas/patologia , Meningioma/genética , Meningioma/radioterapia , Meningioma/patologia , Recidiva Local de Neoplasia/patologia , Estudos Prospectivos
20.
Cell Rep ; 42(11): 113339, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37917583

RESUMO

Glioblastoma (GBM) is the most common lethal primary brain cancer in adults. Despite treatment regimens including surgical resection, radiotherapy, and temozolomide (TMZ) chemotherapy, growth of residual tumor leads to therapy resistance and death. At recurrence, a quarter to a third of all gliomas have hypermutated genomes, with mutational burdens orders of magnitude greater than in normal tissue. Here, we quantified the mutational landscape progression in a patient's primary and recurrent GBM, and we uncovered Cas9-targetable repeat elements. We show that CRISPR-mediated targeting of highly repetitive loci enables rapid elimination of GBM cells, an approach we term "genome shredding." Importantly, in the patient's recurrent GBM, we identified unique repeat sequences with TMZ mutational signature and demonstrated that their CRISPR targeting enables cancer-specific cell ablation. "Cancer shredding" leverages the non-coding genome and therapy-induced mutational signatures for targeted GBM cell depletion and provides an innovative paradigm to develop treatments for hypermutated glioma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia/tratamento farmacológico , Glioblastoma/patologia , Glioma/genética , Glioma/tratamento farmacológico , Antineoplásicos Alquilantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...