Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Phys Rev E ; 107(1-2): 015202, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797905

RESUMO

In order to understand how close current layered implosions in indirect-drive inertial confinement fusion are to ignition, it is necessary to measure the level of alpha heating present. To this end, pairs of experiments were performed that consisted of a low-yield tritium-hydrogen-deuterium (THD) layered implosion and a high-yield deuterium-tritium (DT) layered implosion to validate experimentally current simulation-based methods of determining yield amplification. The THD capsules were designed to reduce simultaneously DT neutron yield (alpha heating) and maintain hydrodynamic similarity with the higher yield DT capsules. The ratio of the yields measured in these experiments then allowed the alpha heating level of the DT layered implosions to be determined. The level of alpha heating inferred is consistent with fits to simulations expressed in terms of experimentally measurable quantities and enables us to infer the level of alpha heating in recent high-performing implosions.

2.
Phys Rev E ; 102(2-1): 023210, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32942378

RESUMO

This paper presents a study on hotspot parameters in indirect-drive, inertially confined fusion implosions as they proceed through the self-heating regime. The implosions with increasing nuclear yield reach the burning-plasma regime, hotspot ignition, and finally propagating burn and ignition. These implosions span a wide range of alpha heating from a yield amplification of 1.7-2.5. We show that the hotspot parameters are explicitly dependent on both yield and velocity and that by fitting to both of these quantities the hotspot parameters can be fit with a single power law in velocity. The yield scaling also enables the hotspot parameters extrapolation to higher yields. This is important as various degradation mechanisms can occur on a given implosion at fixed implosion velocity which can have a large impact on both yield and the hotspot parameters. The yield scaling also enables the experimental dependence of the hotspot parameters on yield amplification to be determined. The implosions reported have resulted in the highest yield (1.73×10^{16}±2.6%), yield amplification, pressure, and implosion velocity yet reported at the National Ignition Facility.

3.
Phys Rev Lett ; 121(13): 135001, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312055

RESUMO

To reach the pressures and densities required for ignition, it may be necessary to develop an approach to design that makes it easier for simulations to guide experiments. Here, we report on a new short-pulse inertial confinement fusion platform that is specifically designed to be more predictable. The platform has demonstrated 99%+0.5% laser coupling into the hohlraum, high implosion velocity (411 km/s), high hotspot pressure (220+60 Gbar), and high cold fuel areal density compression ratio (>400), while maintaining controlled implosion symmetry, providing a promising new physics platform to study ignition physics.

4.
Phys Rev Lett ; 119(5): 055002, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28949748

RESUMO

Ion acoustic waves are found to be susceptible to at least two distinct decay processes. Which process dominates depends on the parameters. In the cases examined, the decay channel where daughter modes propagate parallel to the mother mode is found to dominate at larger amplitudes, while the decay channel where the daughter modes propagate at angles to the mother mode dominates at smaller amplitudes. Both decay processes may occur simultaneously and with onset thresholds below those suggested by fluid theory, resulting in the eventual multidimensional collapse of the mother mode to a turbulent state.

5.
Phys Rev E ; 96(4-1): 043208, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29347527

RESUMO

Collisional damping of electron plasma waves, the primary damping for high phase velocity waves, is proportional to the electron-ion collision rate, ν_{ei,th}. Here, it is shown that the damping rate normalized to ν_{ei,th} depends on the charge state, Z, on the magnitude of ν_{ei,th} and the wave number k in contrast with the commonly used damping rate in plasma wave research. Only for weak collision rates in low-Z plasmas for which the electron self-collision rate is comparable to the electron-ion collision rate is the damping rate given by the commonly accepted value. The result presented here corrects the result presented in textbooks at least as early as 1973. The complete linear theory requires the inclusion of both electron-ion pitch-angle and electron-electron scattering, which itself contains contributions to both pitch-angle scattering and thermalization.

6.
Phys Rev Lett ; 115(5): 055003, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26274426

RESUMO

Stimulated Raman scattering from multiple laser beams arranged in a cone sharing a common daughter wave is investigated for inertial confinement fusion (ICF) conditions in a inhomogeneous plasma. It is found that the shared electron plasma wave (EPW) process, where the lasers collectively drive the same EPW, can lead to an absolute instability when the electron density reaches a matching condition dependent on the cone angle of the laser beams. This mechanism could explain recent experimental observations of hot electrons at early times in ICF experiments, at densities well below quarter critical when two plasmon decay is not expected to occur.

7.
Artigo em Inglês | MEDLINE | ID: mdl-25871045

RESUMO

Three-dimensional wave propagation simulations and experiments show that the gain exponent, an often used metric to assess the likelihood of stimulated Brillouin scatter, is insufficient and must be augmented with another parameter, Nr, the ratio of the resonance length, Lres, to the laser speckle length. The damping rate of ion acoustic waves, ν, and thus Lres, which is proportional to ν, are easily varied with plasma species composition, e.g., by varying the ratio of hydrogen and carbon ions. As Nr decreases, stimulated Brillouin scattering increases despite the same gain exponent.

8.
Allergy Asthma Proc ; 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25420226

RESUMO

Nasal deposition studies can demonstrate whether nasal sprays treating allergic rhinitis and polyposis reach the ciliated posterior nasal cavity, where turbinate inflammation and other pathology occurs. However, quantifying nasal deposition is challenging, because in vitro tests do not correlate to human nasal deposition; gamma scintigraphy studies are thus used. For valid data, the radiolabel must distribute, as the drug, into different-sized droplets, remain associated with the drug in the formulation after administration, and not alter its deposition. Some nasal deposition studies have demonstrated this using homogenous solutions. However, most commercial nasal sprays are heterogeneous suspensions. Using mometasone furoate nasal suspension (MFS), we developed a technique to validate radiolabel deposition as a surrogate for nasal cavity drug deposition and characterized regional deposition and nasal clearance in humans. Mometasone furoate (MF) formulation was spiked with diethylene triamine pentacaetic acid. Both unlabeled and radiolabeled formulations (n = 3) were sprayed into a regionally divided nasal cast. Drug deposition was quantified by high pressure liquid chromatography within each region; radiolabel deposition was determined by gamma camera. Healthy subjects (n = 12) were dosed and imaged for six hours. Scintigraphic images were coregistered with magnetic resonance imaging scans to quantify anterior and posterior nasal cavity deposition and mucociliary clearance. The ratio of radiolabel to unlabeled drug was 1.05 in the nasal cast and regionally appeared to match, indicating that in vivo radiolabel deposition could represent drug deposition. In humans, MFS delivered 86% (9.2) of metered dose to the nasal cavity, approximately 60% (9.1) of metered dose to the posterior nasal cavity. After 15 minutes, mucociliary clearance removed 59% of the initial radiolabel in the nasal cavity, consistent with clearance rates from the ciliated posterior surface. MFS deposited significant drug into the posterior nasal cavity. Both nasal cast validation and mucociliary clearance confirm the radiolabel deposition distribution method accurately represented corticosteroid nasal deposition.

9.
Colorectal Dis ; 16(6): 406-16, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24422861

RESUMO

AIM: Stoma reversal is frequently complicated by surgical site infection (SSI). To reduce SSI, several techniques for skin closure have been studied, with no agreement on which is best. The aim of this study was to identify the skin closure technique associated with the lowest rate of SSI following stoma reversal. METHOD: We systematically searched MEDLINE (PubMed and OvidSP), Scopus and clinical registries from 1 January 1980 to 24 March 2012, and included original reports on adult patients following stoma reversal. A network of treatments was created to map the comparisons between skin closure techniques, including primary closure, primary closure with a drain, secondary closure, delayed primary closure, loose primary closure and circular closure. Pairwise meta-analyses were performed for all available direct comparisons of closure types and heterogeneity was assessed. A multiple-treatments meta-analysis was conducted to estimate relative treatment effects between competing closure types (reported as an odds ratio with 95% credible interval, and a probability that each treatment is best). Several sensitivity analyses were performed. RESULTS: Fifteen studies were identified with a total of 2921 cases of stoma reversal. Overall, study quality was poor with observed low (one study), moderate (seven studies) and high (seven studies) risk of bias. Circular closure was associated with the lowest SSI risk (OR 0.12; 95% CI 0.02-0.40) and was the best of six skin closure techniques (probability of being best = 68.9%). Circular closure remained the best after sensitivity analyses. CONCLUSION: This study showed that circular closure is the best skin closure technique after stoma reversal in terms of SSI rate, but the quality of supporting evidence is limited, precluding definite conclusions.


Assuntos
Procedimentos Cirúrgicos Dermatológicos/métodos , Estomas Cirúrgicos/efeitos adversos , Infecção da Ferida Cirúrgica/epidemiologia , Técnicas de Fechamento de Ferimentos , Saúde Global , Humanos , Incidência , Reoperação/métodos
10.
Phys Rev Lett ; 110(19): 195004, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23705714

RESUMO

The theory of damping and nonlinear frequency shifts from particles resonant with ion-acoustic waves (IAWs) is presented for multi-ion species plasma and compared to driven wave Vlasov simulations. Two distinct IAW modes may be supported in multi-ion species plasmas, broadly classified as fast and slow by their phase velocity relative to the constituent ion thermal velocities. In current fusion-relevant long pulse experiments, the ion to electron temperature ratio, T(i)/T(e), is expected to reach a level such that the least damped and thus more readily driven mode is the slow mode, with both linear and nonlinear properties that are shown to differ significantly from the fast mode. The lighter ion species of the slow mode is found to make no significant contribution to the IAW frequency shift despite typically being the dominant contributor to the Landau damping.

11.
Phys Rev Lett ; 111(10): 105002, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-25166675

RESUMO

Two-dimensional simulations, both Vlasov and particle-in-cell, are presented that show the evolution of the field and electron distribution of finite-width, nonlinear electron plasma waves. The intrinsically intertwined effects of self-focusing and dissipation of field energy caused by electron trapping are studied in simulated systems that are hundreds of wavelengths long in the transverse direction but only one wavelength long and periodic in the propagation direction. From various initial wave states, both the width at focus Δm relative to the initial width Δ0 and the maximum field amplitude at focus are shown to be a function of the growth rate of the transverse modulational instability γTPMI divided by the loss rate of field energy νE to electrons escaping the trapping region. With dissipation included, an amplitude threshold for self-focusing γTPMI/νE∼1 is found that supports the analysis of Rose [Phys. Plasmas 12, 012318 (2005)].

12.
Phys Rev Lett ; 109(19): 195004, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23215392

RESUMO

In this Letter, we show through numerical simulations and analytical results that overlapping multiple (N) laser beams in plasmas can lead to strong stochastic ion heating from many (~N(2)) electrostatic perturbations driven by beat waves between pairs of laser beams. For conditions typical of inertial-confinement-fusion experiment conditions, hundreds of such beat waves are driven in mm(3)-scale plasmas, leading to ion heating rates of several keV/ns. This mechanism saturates cross-beam energy transfer, with a reduction of linear gains by a factor ~4-5 and can strongly modify the overall hydrodynamics evolution of such laser-plasma systems.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(4 Pt 2): 046409, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21599318

RESUMO

By using three tunable wavelengths on different cones of laser beams on the National Ignition Facility, numerical simulations show that the energy transfer between beams can be tuned to redistribute the energy within the cones of beams most prone to backscatter instabilities. These radiative hydrodynamics and laser-plasma interaction simulations have been tested against large-scale hohlraum experiments with two tunable wavelengths and reproduce the hohlraum energetics and symmetry. Using a third wavelength provides a greater level of control of the laser energy distribution and coupling in the hohlraum, and could significantly reduce stimulated Raman scattering losses and increase the hohlraum radiation drive while maintaining a good implosion symmetry.

14.
Phys Rev Lett ; 106(8): 085004, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21405580

RESUMO

We demonstrate the hohlraum radiation temperature and symmetry required for ignition-scale inertial confinement fusion capsule implosions. Cryogenic gas-filled hohlraums with 2.2 mm-diameter capsules are heated with unprecedented laser energies of 1.2 MJ delivered by 192 ultraviolet laser beams on the National Ignition Facility. Laser backscatter measurements show that these hohlraums absorb 87% to 91% of the incident laser power resulting in peak radiation temperatures of T(RAD)=300 eV and a symmetric implosion to a 100 µm diameter hot core.

15.
Phys Rev Lett ; 103(4): 045006, 2009 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-19659366

RESUMO

We show that the measured stimulated Raman scattering (SRS) in a large-scale high-temperature plasma scales strongly with the plasma density, increasing by an order of magnitude when the electron density is increased by 20%. This is consistent with linear theory, including pump depletion, in a uniform plasma and, as the density is typically constrained by other processes, this effect will set a limit on drive laser beam intensity for forthcoming ignition experiments at the National Ignition Facility. Control of SRS at laser intensities consistent with 285 eV ignition hohlraums is achieved by using polarization smoothing which increases the intensity threshold for the onset of SRS by 1.6 +/- 0.2. These results were quantitatively predicted by full beam three-dimensional numerical laser-plasma interaction simulations.

16.
Phys Rev Lett ; 101(11): 115002, 2008 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-18851289

RESUMO

We demonstrate a significant reduction of stimulated Brillouin scattering by polarization smoothing in large-scale high-temperature hohlraum plasma conditions where filamentation is measured to be negligible. The stimulated Brillouin scattering experimental threshold (defined as the intensity at which 5% of the incident light is backscattered) is measured to increase by a factor of 1.7+/-0.2 when polarization smoothing is applied. An analytical model relevant to inertial confinement fusion plasma conditions shows that the measured reduction in backscatter with polarization smoothing results from the random spatial variation in polarization of the laser beam, not from the reduction in beam contrast.

17.
Phys Rev Lett ; 100(25): 255001, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18643667

RESUMO

The first three-dimensional simulations of a high power 0.351 mum laser beam propagating through a high temperature hohlraum plasma are reported. We show that 3D fluid-based modeling of stimulated Brillouin scattering, including linear kinetic corrections, reproduces quantitatively the experimental measurements, provided it is coupled to detailed hydrodynamics simulation and a realistic description of the laser beam from its millimeter-size envelope down to the micron scale speckles. These simulations accurately predict the strong reduction of stimulated Brillouin scattering measured when polarization smoothing is used.

18.
Phys Rev Lett ; 100(10): 105001, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18352195

RESUMO

We demonstrate that multiple-ion-species plasmas greatly reduce stimulated Brillouin scattering (SBS) in high-electron temperature inertial confinement fusion hohlraums. Landau damping is increased by adding hydrogen to a CO(2) gas filled hohlraum. We find that the SBS reflectivity decreases monotonically with increasing hydrogen fraction from 18% to 3% with a simultaneous increase of laser beam transmission. Detailed simulations with a 3D laser-plasma interaction code are in agreement with the experimentally observed reduction in backscattered light.

19.
Phys Rev Lett ; 100(4): 045002, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18352288

RESUMO

We demonstrate propagation and small backscatter losses of a frequency-doubled (2omega) laser beam interacting with inertial confinement fusion hohlraum plasmas. The electron temperature of 3.3 keV, approximately a factor of 2 higher than achieved in previous experiments with open geometry targets, approaches plasma conditions of high-fusion yield hohlraums. In this new temperature regime, we measure 2omega laser-beam transmission approaching 80% with simultaneous backscattering losses of less than 10%. These findings suggest that good laser coupling into fusion hohlraums using 2omega light is possible.

20.
Phys Rev Lett ; 100(1): 015002, 2008 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-18232778

RESUMO

We demonstrate laser beam propagation and low backscatter in laser produced hohlraum plasmas of ignition plasma length. At intensities I < 5 x 10(14) W cm(-2) greater than 80% of the energy in a blue (3 omega, 351 nm) laser is transmitted through a L=5-mm long, high-temperature (Te = 2.5 keV), high-density (ne = 5 x 10(20) cm(-3)) plasma. These experiments show that the backscatter scales exponentially with plasma length which is consistent with linear theory. The backscatter calculated by a new steady state 3D laser-plasma interaction code developed for large ignition plasmas is in good agreement with the measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...