Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Am J Transplant ; 24(5): 743-754, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38097018

RESUMO

Antibody-mediated rejection (ABMR) is a leading cause of graft failure. Emerging evidence suggests a significant contribution of natural killer (NK) cells to microvascular inflammation (MVI). We investigated the influence of genetically determined NK cell functionality on ABMR development and activity. The study included 86 kidney transplant recipients subjected to systematic biopsies triggered by donor-specific antibody detection. We performed killer immunoglobulin-like receptor typing to predict missing self and genotyped polymorphisms determining NK cell functionality (FCGR3AV/F158 [rs396991], KLRC2wt/del, KLRK1HNK/LNK [rs1049174], rs9916629-C/T). Fifty patients had ABMR with considerable MVI and elevated NK cell transcripts. Missing self was not related to MVI. Only KLRC2wt/wt showed an association (MVI score: 2 [median; interquartile range: 0-3] vs 0 [0-1] in KLRC2wt/del recipients; P = .001) and remained significant in a proportional odds multivariable model (odds ratio, 7.84; 95% confidence interval, 2.37-30.47; P = .001). A sum score incorporating all polymorphisms and missing self did not outperform a score including only KLRC2 and FCGR3A variants, which were predictive in univariable analysis. NK cell genetics did not affect graft functional decline and survival. In conclusion, a functional KLRC2 polymorphism emerged as an independent determinant of ABMR activity, without a considerable contribution of missing self and other NK cell gene polymorphisms.


Assuntos
Rejeição de Enxerto , Sobrevivência de Enxerto , Inflamação , Isoanticorpos , Transplante de Rim , Células Matadoras Naturais , Doadores de Tecidos , Humanos , Células Matadoras Naturais/imunologia , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/patologia , Transplante de Rim/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Doadores de Tecidos/provisão & distribuição , Isoanticorpos/imunologia , Prognóstico , Inflamação/imunologia , Seguimentos , Sobrevivência de Enxerto/imunologia , Adulto , Fatores de Risco , Microvasos/patologia , Microvasos/imunologia , Genótipo , Falência Renal Crônica/cirurgia , Falência Renal Crônica/imunologia , Falência Renal Crônica/genética , Testes de Função Renal , Biomarcadores/análise , Biomarcadores/metabolismo
2.
Cell ; 186(26): 5705-5718.e13, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38091993

RESUMO

Multiple sclerosis (MS) is a demyelinating disease of the CNS. Epstein-Barr virus (EBV) contributes to the MS pathogenesis because high levels of EBV EBNA386-405-specific antibodies cross react with the CNS-derived GlialCAM370-389. However, it is unclear why only some individuals with such high autoreactive antibody titers develop MS. Here, we show that autoreactive cells are eliminated by distinct immune responses, which are determined by genetic variations of the host, as well as of the infecting EBV and human cytomegalovirus (HCMV). We demonstrate that potent cytotoxic NKG2C+ and NKG2D+ natural killer (NK) cells and distinct EBV-specific T cell responses kill autoreactive GlialCAM370-389-specific cells. Furthermore, immune evasion of these autoreactive cells was induced by EBV-variant-specific upregulation of the immunomodulatory HLA-E. These defined virus and host genetic pre-dispositions are associated with an up to 260-fold increased risk of MS. Our findings thus allow the early identification of patients at risk for MS and suggest additional therapeutic options against MS.


Assuntos
Autoimunidade , Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Humanos , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/genética , Antígenos de Histocompatibilidade Classe I , Esclerose Múltipla/imunologia , Células Matadoras Naturais/imunologia
3.
Front Immunol ; 14: 1183788, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426645

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous herpesvirus, which infects over 90% of the adult human population worldwide. After primary infections, EBV is recurrently reactivating in most adult individuals. It is, however, unclear, why these EBV reactivations progress to EBV+ Hodgkin (EBV+HL) or non-Hodgkin lymphomas (EBV+nHL) only in a minority of EBV-infected individuals. The EBV LMP-1 protein encodes for a highly polymorphic peptide, which upregulates the immunomodulatory HLA-E in EBV-infected cells, thereby stimulating the inhibitory NKG2A-, but also the activating NKG2C-receptor on natural killer (NK) cells. Using a genetic-association approach and functional NK cell analyses, we now investigated, whether these HLA-E-restricted immune responses impact the development of EBV+HL and EBV+nHL. Therefore, we recruited a study cohort of 63 EBV+HL and EBV+nHL patients and 192 controls with confirmed EBV reactivations, but without lymphomas. Here, we demonstrate that in EBV+ lymphoma patients exclusively the high-affine LMP-1 GGDPHLPTL peptide variant-encoding EBV-strains reactivate. In EBV+HL and EBV+nHL patients, the high-expressing HLA-E*0103/0103 genetic variant was significantly overrepresented. Combined, the LMP-1 GGDPHLPTL and HLA-E*0103/0103 variants efficiently inhibited NKG2A+ NK cells, thereby facilitating the in vitro spread of EBV-infected tumor cells. In addition, EBV+HL and EBV+nHL patients, showed impaired pro-inflammatory NKG2C+ NK cell responses, which accelerated the in vitro EBV-infected tumor cells spread. In contrast, the blocking of NKG2A by monoclonal antibodies (Monalizumab) resulted in efficient control of EBV-infected tumor cell growth, especially by NKG2A+NKG2C+ NK cells. Thus, the HLA-E/LMP-1/NKG2A pathway and individual NKG2C+ NK cell responses are associated with the progression toward EBV+ lymphomas.


Assuntos
Infecções por Vírus Epstein-Barr , Linfoma , Adulto , Humanos , Herpesvirus Humano 4 , Infecções por Vírus Epstein-Barr/metabolismo , Células Matadoras Naturais , Linfoma/metabolismo , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...