Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 133: 102599, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485445

RESUMO

Cyanobacterial blooms present substantial challenges to managers and threaten ecological and public health. Although the majority of cyanobacterial bloom research and management focuses on factors that control bloom initiation, duration, toxicity, and geographical extent, relatively little research focuses on the role of loss processes in blooms and how these processes are regulated. Here, we define a loss process in terms of population dynamics as any process that removes cells from a population, thereby decelerating or reducing the development and extent of blooms. We review abiotic (e.g., hydraulic flushing and oxidative stress/UV light) and biotic factors (e.g., allelopathic compounds, infections, grazing, and resting cells/programmed cell death) known to govern bloom loss. We found that the dominant loss processes depend on several system specific factors including cyanobacterial genera-specific traits, in situ physicochemical conditions, and the microbial, phytoplankton, and consumer community composition. We also address loss processes in the context of bloom management and discuss perspectives and challenges in predicting how a changing climate may directly and indirectly affect loss processes on blooms. A deeper understanding of bloom loss processes and their underlying mechanisms may help to mitigate the negative consequences of cyanobacterial blooms and improve current management strategies.


Assuntos
Cianobactérias , Cianobactérias/fisiologia
2.
Sci Total Environ ; 916: 170140, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244618

RESUMO

Shallow lake ecosystems are particularly prone to disturbances such as pulsed dissolved organic matter (allochthonous-DOM; hereafter allo-DOM) loadings from catchments. However, the effects of allo-DOM with contrasting quality (in addition to quantity) on the planktonic communities of microbial loop are poorly understood. To determine the impact of different qualities of pulsed allo-DOM disturbance on the coupling between bacteria and ciliates, we conducted a mesocosm experiment with two different allo-DOM sources added to mesocosms in a single-pulse disturbance event: Alder tree leaf extract, a more labile (L) source and HuminFeed® (HF), a more recalcitrant source. Allo-DOM sources were used as separate treatments and in combination (HFL) relative to the control without allo-DOM additions (C). Our results indicate that the quality of allo-DOM was a major regulator of planktonic microbial community biomass and/or composition through which both bottom-up and top-down forces were involved. Bacteria biomass showed significant nonlinear responses in L and HFL with initial increases followed by decreases to pre-pulse conditions. Ciliate biomass was significantly higher in L compared to all other treatments. In terms of composition, bacterivore ciliate abundance was significantly higher in both L and HFL treatments, mainly driven by the bacterial biomass increase in the same treatments. GAMM models showed negative interaction between metazoan zooplankton biomass and ciliates, but only in the L treatment, indicating top-down control on ciliates. Ecosystem stability analyses revealed overperformance, high resilience and full recovery of bacteria in the HFL and L treatments, while ciliates showed significant shift in compositional stability in HFL and L with incomplete taxonomic recovery. Our study highlights the importance of allo-DOM quality shaping the response within the microbial loop not only through triggering different scenarios in biomass, but also the community composition, stability, and species interactions (top-down and bottom-up) in bacteria and plankton.


Assuntos
Ecossistema , Lagos , Animais , Lagos/microbiologia , Matéria Orgânica Dissolvida , Bactérias , Biomassa , Plâncton
3.
Glob Chang Biol ; 30(1): e17013, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994377

RESUMO

Lakes worldwide are affected by multiple stressors, including climate change. This includes massive loading of both nutrients and humic substances to lakes during extreme weather events, which also may disrupt thermal stratification. Since multi-stressor effects vary widely in space and time, their combined ecological impacts remain difficult to predict. Therefore, we combined two consecutive large enclosure experiments with a comprehensive time-series and a broad-scale field survey to unravel the combined effects of storm-induced lake browning, nutrient enrichment and deep mixing on phytoplankton communities, focusing particularly on potentially toxic cyanobacterial blooms. The experimental results revealed that browning counteracted the stimulating effect of nutrients on phytoplankton and caused a shift from phototrophic cyanobacteria and chlorophytes to mixotrophic cryptophytes. Light limitation by browning was identified as the likely mechanism underlying this response. Deep-mixing increased microcystin concentrations in clear nutrient-enriched enclosures, caused by upwelling of a metalimnetic Planktothrix rubescens population. Monitoring data from a 25-year time-series of a eutrophic lake and from 588 northern European lakes corroborate the experimental results: Browning suppresses cyanobacteria in terms of both biovolume and proportion of the total phytoplankton biovolume. Both the experimental and observational results indicated a lower total phosphorus threshold for cyanobacterial bloom development in clearwater lakes (10-20 µg P L-1 ) than in humic lakes (20-30 µg P L-1 ). This finding provides management guidance for lakes receiving more nutrients and humic substances due to more frequent extreme weather events.


Assuntos
Cianobactérias , Fitoplâncton , Lagos/microbiologia , Substâncias Húmicas , Eutrofização , Nutrientes , Fósforo/análise , China
4.
Nature ; 619(7969): 317-322, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438590

RESUMO

Plastic debris is thought to be widespread in freshwater ecosystems globally1. However, a lack of comprehensive and comparable data makes rigorous assessment of its distribution challenging2,3. Here we present a standardized cross-national survey that assesses the abundance and type of plastic debris (>250 µm) in freshwater ecosystems. We sample surface waters of 38 lakes and reservoirs, distributed across gradients of geographical position and limnological attributes, with the aim to identify factors associated with an increased observation of plastics. We find plastic debris in all studied lakes and reservoirs, suggesting that these ecosystems play a key role in the plastic-pollution cycle. Our results indicate that two types of lakes are particularly vulnerable to plastic contamination: lakes and reservoirs in densely populated and urbanized areas and large lakes and reservoirs with elevated deposition areas, long water-retention times and high levels of anthropogenic influence. Plastic concentrations vary widely among lakes; in the most polluted, concentrations reach or even exceed those reported in the subtropical oceanic gyres, marine areas collecting large amounts of debris4. Our findings highlight the importance of including lakes and reservoirs when addressing plastic pollution, in the context of pollution management and for the continued provision of lake ecosystem services.


Assuntos
Lagos , Plásticos , Poluição da Água , Abastecimento de Água , Ecossistema , Lagos/química , Plásticos/análise , Plásticos/classificação , Poluição da Água/análise , Poluição da Água/estatística & dados numéricos , Inquéritos e Questionários , Urbanização , Atividades Humanas
5.
ISME J ; 16(9): 2242-2254, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35764676

RESUMO

Zoosporic fungi of the phylum Chytridiomycota (chytrids) regularly dominate pelagic fungal communities in freshwater and marine environments. Their lifestyles range from obligate parasites to saprophytes. Yet, linking the scarce available sequence data to specific ecological traits or their host ranges constitutes currently a major challenge. We combined 28 S rRNA gene amplicon sequencing with targeted isolation and sequencing approaches, along with cross-infection assays and analysis of chytrid infection prevalence to obtain new insights into chytrid diversity, ecology, and seasonal dynamics in a temperate lake. Parasitic phytoplankton-chytrid and saprotrophic pollen-chytrid interactions made up the majority of zoosporic fungal reads. We explicitly demonstrate the recurrent dominance of parasitic chytrids during frequent diatom blooms and saprotrophic chytrids during pollen rains. Distinct temporal dynamics of diatom-specific parasitic clades suggest mechanisms of coexistence based on niche differentiation and competitive strategies. The molecular and ecological information on chytrids generated in this study will aid further exploration of their spatial and temporal distribution patterns worldwide. To fully exploit the power of environmental sequencing for studies on chytrid ecology and evolution, we emphasize the need to intensify current isolation efforts of chytrids and integrate taxonomic and autecological data into long-term studies and experiments.


Assuntos
Quitridiomicetos , Diatomáceas , Parasitos , Animais , Quitridiomicetos/genética , Diatomáceas/genética , Diatomáceas/microbiologia , Fungos/genética , Lagos/microbiologia , Fitoplâncton/microbiologia
6.
Ecology ; 103(5): e3674, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35253210

RESUMO

In many ecosystems, consumers respond to warming differently than their resources, sometimes leading to temporal mismatches between seasonal maxima in consumer demand and resource availability. A potentially equally pervasive, but less acknowledged threat to the temporal coherence of consumer-resource interactions is mismatch in food quality. Many plant and algal communities respond to warming with shifts toward more carbon-rich species and growth forms, thereby diluting essential elements in their biomass and intensifying the stoichiometric mismatch with herbivore nutrient requirements. Here we report on a mesocosm experiment on the spring succession of an assembled plankton community in which we manipulated temperature (ambient vs. +3.6°C) and presence versus absence of two types of grazers (ciliates and Daphnia), and where warming caused a dramatic regime shift that coincided with extreme stoichiometric mismatch. At ambient temperatures, a typical spring succession developed, where a moderate bloom of nutritionally adequate phytoplankton was grazed down to a clear-water phase by a developing Daphnia population. While warming accelerated initial Daphnia population growth, it speeded up algal growth rates even more, triggering a massive phytoplankton bloom of poor food quality. Consistent with the predictions of a stoichiometric producer-grazer model, accelerated phytoplankton growth promoted the emergence of an alternative system attractor, where the extremely low phosphorus content of the abundant algal food eventually drove Daphnia to extinction. Where present, ciliates slowed down the phytoplankton bloom and the deterioration of its nutritional value, but this only delayed the regime shift. Eventually, phytoplankton also grew out of grazer control in the presence of ciliates, and the Daphnia population crashed. To our knowledge, the experiment is the first empirical demonstration of the "paradox of energy enrichment" (grazer starvation in an abundance of energy-rich but nutritionally imbalanced food) in a multispecies phytoplankton community. More generally, our results support the notion that warming can exacerbate the stoichiometric mismatch at the plant-herbivore interface and limit energy transfer to higher trophic levels.


Assuntos
Ecossistema , Plâncton , Animais , Daphnia , Cadeia Alimentar , Fitoplâncton , Estações do Ano
7.
Mol Ecol ; 31(6): 1716-1734, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35028982

RESUMO

Changes in land use and agricultural intensification threaten biodiversity and ecosystem functioning of small water bodies. We studied 67 kettle holes (KH) in an agricultural landscape in northeastern Germany using landscape-scale metatranscriptomics to understand the responses of active bacterial, archaeal and eukaryotic communities to land-use type. These KH are proxies of the millions of small standing water bodies of glacial origin spread across the northern hemisphere. Like other landscapes in Europe, the study area has been used for intensive agriculture since the 1950s. In contrast to a parallel environmental DNA study that suggests the homogenization of biodiversity across KH, conceivably resulting from long-lasting intensive agriculture, land-use type affected the structure of the active KH communities during spring crop fertilization, but not a month later. This effect was more pronounced for eukaryotes than for bacteria. In contrast, gene expression patterns did not differ between months or across land-use types, suggesting a high degree of functional redundancy across the KH communities. Variability in gene expression was best explained by active bacterial and eukaryotic community structures, suggesting that these changes in functioning are primarily driven by interactions between organisms. Our results indicate that influences of the surrounding landscape result in temporary changes in the activity of different community members. Thus, even in KH where biodiversity has been homogenized, communities continue to respond to land management. This potential needs to be considered when developing sustainable management options for restoration purposes and for successful mitigation of further biodiversity loss in agricultural landscapes.


Assuntos
Ecossistema , Lagoas , Agricultura/métodos , Archaea/genética , Biodiversidade
8.
Trends Ecol Evol ; 37(5): 440-453, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35058082

RESUMO

The widespread salinisation of freshwater ecosystems poses a major threat to the biodiversity, functioning, and services that they provide. Human activities promote freshwater salinisation through multiple drivers (e.g., agriculture, resource extraction, urbanisation) that are amplified by climate change. Due to its complexity, we are still far from fully understanding the ecological and evolutionary consequences of freshwater salinisation. Here, we assess current research gaps and present a research agenda to guide future studies. We identified different gaps in taxonomic groups, levels of biological organisation, and geographic regions. We suggest focusing on global- and landscape-scale processes, functional approaches, genetic and molecular levels, and eco-evolutionary dynamics as key future avenues to predict the consequences of freshwater salinisation for ecosystems and human societies.


Assuntos
Ecossistema , Água Doce , Biodiversidade , Evolução Biológica , Mudança Climática , Humanos
9.
Sci Rep ; 11(1): 23478, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873189

RESUMO

Light pollution is an environmental stressor of global extent that is growing exponentially in area and intensity. Artificial skyglow, a form of light pollution with large range, is hypothesized to have environmental impact at ecosystem level. However, testing the impact of skyglow at large scales and in a controlled fashion under in situ conditions has remained elusive so far. Here we present the first experimental setup to mimic skyglow at ecosystem level outdoors in an aquatic environment. Spatially diffuse and homogeneous surface illumination that is adjustable between 0.01 and 10 lx, resembling rural to urban skyglow levels, was achieved with white light-emitting diodes at a large-scale lake enclosure facility. The illumination system was enabled by optical modeling with Monte-Carlo raytracing and validated by measurements. Our method can be adapted to other outdoor and indoor skyglow experiments, urgently needed to understand the impact of skyglow on ecosystems.

10.
Glob Chang Biol ; 27(19): 4615-4629, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34241940

RESUMO

Winter conditions, such as ice cover and snow accumulation, are changing rapidly at northern latitudes and can have important implications for lake processes. For example, snowmelt in the watershed-a defining feature of lake hydrology because it delivers a large portion of annual nutrient inputs-is becoming earlier. Consequently, earlier and a shorter duration of snowmelt are expected to affect annual phytoplankton biomass. To test this hypothesis, we developed an index of runoff timing based on the date when 50% of cumulative runoff between January 1 and May 31 had occurred. The runoff index was computed using stream discharge for inflows, outflows, or for flows from nearby streams for 41 lakes in Europe and North America. The runoff index was then compared with summer chlorophyll-a (Chl-a) concentration (a proxy for phytoplankton biomass) across 5-53 years for each lake. Earlier runoff generally corresponded to lower summer Chl-a. Furthermore, years with earlier runoff also had lower winter/spring runoff magnitude, more protracted runoff, and earlier ice-out. We examined several lake characteristics that may regulate the strength of the relationship between runoff timing and summer Chl-a concentrations; however, our tested covariates had little effect on the relationship. Date of ice-out was not clearly related to summer Chl-a concentrations. Our results indicate that ongoing changes in winter conditions may have important consequences for summer phytoplankton biomass and production.


Assuntos
Lagos , Fitoplâncton , Clorofila , Clorofila A , Estações do Ano
11.
J Plankton Res ; 43(3): 396-412, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084088

RESUMO

Understanding the influence of environmental and spatial factors on the structure of aquatic communities remains a major challenge in community ecology. This study aims to identify main drivers of rotifer abundance and diversity in ponds embedded in an intensive agricultural landscape in Northeast Germany. We studied 42 ponds of glacial origin (kettle holes) covering a wide range of environmental parameters. The predominant factors structuring the rotifer metacommunity shifted from abiotic environmental filtering in spring to unstudied factors in autumn, while spatial factors remained less important. Fertilizer-driven salinization, internal nutrient recycling, primary productivity and sediment phosphorus release were the prevalent biogeochemical processes in the ponds. Both fertilizer-driven salinization and primary productivity negatively affected rotifer alpha diversity, and positively affected beta diversity. This impact was lower in forest ponds than in those surrounded by arable fields or grassland. However, rotifer diversity did not significantly differ among land-use categories. Our results indicate that the long-term impact of intensive agriculture in the region and the associated widespread eutrophication overrides the direct influence of land use on rotifer diversity but point to an indirect effect via fertilizer-driven salinization. Furthermore, this study highlights the role of ponds in enhancing regional biodiversity in agricultural landscapes.

12.
Heliyon ; 6(11): e05582, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33294708

RESUMO

Extracellular enzyme activities (EEA) are crucial components of microbial food web interactions and biogeochemical cycles in aquatic ecosystems. They also represent relevant biological traits in the ecophysiology of phytoplankton and other components of microbial plankton. To assess species-specific and (sub-)population-level characteristics of phytoplankton EEA at the single-cell level and close-to-in-situ conditions solely the enzyme labelled fluorescence (ELF)-based substrates have been used, because they become fluorescent and precipitate around the enzyme activity location upon enzymatic cleavage. However, the enzyme-labelled fluorescence alcohol (ELFA) standard is no longer commercially available, hence standard curves cannot be run anymore and single-cell phosphatase activity (SCPA) is no longer quantifiable. Therefore, we introduce a simple protocol for an ELFA standard do it yourself (DIY) production to enable quantifying microplankton SCPA again. This protocol is based on fluorescence measurements easily available to environmental enzyme activity laboratories, and it circumvents any need for chemical synthesis equipment and knowledge. The method is based on a controlled reaction of the ELF-phosphate (ELFP) substrate with commercially available alkaline phosphatase, which efficiently turns all the substrate into ELFA product. The ELFA product was dried out and dissolved again in dimethyl sulfoxide (DMSO) for storage. The ELFA concentration of that standard-to-be ELFA solution in DMSO was determined by linear regression between a low concentration dilution series of ELFA solution measured fluorimetrically and parallel measurements of a series of phosphatase-catalysed reactions at an overlapping ELFP concentration range. Finally, the fluorescence- and concentration-stable ELFA solution in DMSO with a known concentration constitutes the ELFA standard that is necessary to quantify bulk (fluorimeter) and single-cell (microscope and flow cytometer) phosphatase activity in microplankton.

13.
Environ Microbiol ; 22(9): 3863-3882, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32656913

RESUMO

Ocean acidification (OA), a consequence of anthropogenic carbon dioxide (CO2 ) emissions, strongly impacts marine ecosystems. OA also influences iron (Fe) solubility, affecting biogeochemical and ecological processes. We investigated the interactive effects of CO2 and Fe availability on the metabolome response of a natural phytoplankton community. Using mesocosms we exposed phytoplankton to ambient (390 µatm) or future CO2 levels predicted for the year 2100 (900 µatm), combined with ambient (4.5 nM) or high (12 nM) dissolved iron (dFe). By integrating over the whole phytoplankton community, we assigned functional changes based on altered metabolite concentrations. Our study revealed the complexity of phytoplankton metabolism. Metabolic profiles showed three stages in response to treatments and phytoplankton dynamics. Metabolome changes were related to the plankton group contributing respective metabolites, explaining bloom decline and community succession. CO2 and Fe affected metabolic profiles. Most saccharides, fatty acids, amino acids and many sterols significantly correlated with the high dFe treatment at ambient pCO2 . High CO2 lowered the abundance of many metabolites irrespective of Fe. However, sugar alcohols accumulated, indicating potential stress. We demonstrate that not only altered species composition but also changes in the metabolic landscape affecting the plankton community may change as a consequence of future high-CO2 oceans.


Assuntos
Dióxido de Carbono/metabolismo , Haptófitas/metabolismo , Ferro/metabolismo , Microbiota , Fitoplâncton/metabolismo , Dióxido de Carbono/análise , Concentração de Íons de Hidrogênio , Ferro/química , Metaboloma , Fitoplâncton/classificação , Fitoplâncton/isolamento & purificação , Água do Mar/química , Água do Mar/microbiologia
14.
Environ Microbiol ; 19(10): 3802-3822, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28618196

RESUMO

Chytridiomycota, often referred to as chytrids, can be virulent parasites with the potential to inflict mass mortalities on hosts, causing e.g. changes in phytoplankton size distributions and succession, and the delay or suppression of bloom events. Molecular environmental surveys have revealed an unexpectedly large diversity of chytrids across a wide range of aquatic ecosystems worldwide. As a result, scientific interest towards fungal parasites of phytoplankton has been gaining momentum in the past few years. Yet, we still know little about the ecology of chytrids, their life cycles, phylogeny, host specificity and range. Information on the contribution of chytrids to trophic interactions, as well as co-evolutionary feedbacks of fungal parasitism on host populations is also limited. This paper synthesizes ideas stressing the multifaceted biological relevance of phytoplankton chytridiomycosis, resulting from discussions among an international team of chytrid researchers. It presents our view on the most pressing research needs for promoting the integration of chytrid fungi into aquatic ecology.


Assuntos
Quitridiomicetos/classificação , Quitridiomicetos/patogenicidade , Micoses/microbiologia , Fitoplâncton/microbiologia , Animais , Evolução Biológica , Ecologia , Ecossistema , Microbiologia Ambiental , Cadeia Alimentar , Especificidade de Hospedeiro , Filogenia
15.
Glob Chang Biol ; 23(4): 1448-1462, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27664076

RESUMO

Extreme weather events can pervasively influence ecosystems. Observations in lakes indicate that severe storms in particular can have pronounced ecosystem-scale consequences, but the underlying mechanisms have not been rigorously assessed in experiments. One major effect of storms on lakes is the redistribution of mineral resources and plankton communities as a result of abrupt thermocline deepening. We aimed at elucidating the importance of this effect by mimicking in replicated large enclosures (each 9 m in diameter, ca. 20 m deep, ca. 1300 m3 in volume) a mixing event caused by a severe natural storm that was previously observed in a deep clear-water lake. Metabolic rates were derived from diel changes in vertical profiles of dissolved oxygen concentrations using a Bayesian modelling approach, based on high-frequency measurements. Experimental thermocline deepening stimulated daily gross primary production (GPP) in surface waters by an average of 63% for >4 weeks even though thermal stratification re-established within 5 days. Ecosystem respiration (ER) was tightly coupled to GPP, exceeding that in control enclosures by 53% over the same period. As GPP responded more strongly than ER, net ecosystem productivity (NEP) of the entire water column was also increased. These protracted increases in ecosystem metabolism and autotrophy were driven by a proliferation of inedible filamentous cyanobacteria released from light and nutrient limitation after they were entrained from below the thermocline into the surface water. Thus, thermocline deepening by a single severe storm can induce prolonged responses of lake ecosystem metabolism independent of other storm-induced effects, such as inputs of terrestrial materials by increased catchment run-off. This highlights that future shifts in frequency, severity or timing of storms are an important component of climate change, whose impacts on lake thermal structure will superimpose upon climate trends to influence algal dynamics and organic matter cycling in clear-water lakes.


Assuntos
Mudança Climática , Ecossistema , Lagos , Teorema de Bayes , Estações do Ano
16.
Sci Rep ; 6: 29286, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27404551

RESUMO

Mixotrophs combine photosynthesis with phagotrophy to cover their demands in energy and essential nutrients. This gives them a competitive advantage under oligotropihc conditions, where nutrients and bacteria concentrations are low. As the advantage for the mixotroph depends on light, the competition between mixo- and heterotrophic bacterivores should be regulated by light. To test this hypothesis, we incubated natural plankton from the ultra-oligotrophic Eastern Mediterranean in a set of mesocosms maintained at 4 light levels spanning a 10-fold light gradient. Picoplankton (heterotrophic bacteria (HB), pico-sized cyanobacteria, and small-sized flagellates) showed the fastest and most marked response to light, with pronounced predator-prey cycles, in the high-light treatments. Albeit cell specific activity of heterotrophic bacteria was constant across the light gradient, bacterial abundances exhibited an inverse relationship with light. This pattern was explained by light-induced top-down control of HB by bacterivorous phototrophic eukaryotes (PE), which was evidenced by a significant inverse relationship between HB net growth rate and PE abundances. Our results show that light mediates the impact of mixotrophic bacterivores. As mixo- and heterotrophs differ in the way they remineralize nutrients, these results have far-reaching implications for how nutrient cycling is affected by light.


Assuntos
Luz , Fotossíntese , Plâncton/fisiologia , Animais , Processos Autotróficos , Biomassa , Ecossistema , Processos Heterotróficos , Mar Mediterrâneo , Especificidade de Órgãos , Comportamento Predatório
17.
Front Microbiol ; 6: 1427, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26733971

RESUMO

Gelatinous zooplankton, such as ctenophores and jellyfish, are important components of marine and brackish ecosystems and play critical roles in aquatic biogeochemistry. As voracious predators of plankton, ctenophores have key positions in aquatic food webs and are often successful invaders when introduced to new areas. Gelatinous zooplankton have strong impacts on ecosystem services, particularly in coastal environments. However, little is known about the factors responsible for regulating population dynamics of gelatinous organisms, including biological interactions that may contribute to bloom demise. Ctenophores are known to contain specific bacterial communities and a variety of invertebrate parasites and symbionts; however, no previous studies have examined the presence of viruses in these organisms. Building upon recent studies demonstrating a diversity of single-stranded DNA viruses that encode a replication initiator protein (Rep) in aquatic invertebrates, this study explored the presence of circular, Rep-encoding single-stranded DNA (CRESS-DNA) viruses in the ctenophores Mnemiopsis leidyi and Beroe ovata collected from the Skidaway River Estuary and Savannah River in Georgia, USA. Using rolling circle amplification followed by restriction enzyme digestion, this study provides the first evidence of viruses in ctenophores. Investigation of four CRESS-DNA viruses over an 8-month period using PCR demonstrated temporal trends in viral prevalence and indicated that some of the viruses may persist in ctenophore populations throughout the year. Although future work needs to examine the ecological roles of these ctenophore-associated viruses, this study indicates that viral infection may play a role in population dynamics of gelatinous zooplankton.

18.
PLoS One ; 9(4): e94388, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24721992

RESUMO

We studied the effects of future climate change scenarios on plankton communities of a Norwegian fjord using a mesocosm approach. After the spring bloom, natural plankton were enclosed and treated in duplicates with inorganic nutrients elevated to pre-bloom conditions (N, P, Si; eutrophication), lowering of 0.4 pH units (acidification), and rising 3°C temperature (warming). All nutrient-amended treatments resulted in phytoplankton blooms dominated by chain-forming diatoms, and reached 13-16 µg chlorophyll (chl) a l-1. In the control mesocosms, chl a remained below 1 µg l-1. Acidification and warming had contrasting effects on the phenology and bloom-dynamics of autotrophic and heterotrophic microplankton. Bacillariophyceae, prymnesiophyceae, cryptophyta, and Protoperidinium spp. peaked earlier at higher temperature and lower pH. Chlorophyta showed lower peak abundances with acidification, but higher peak abundances with increased temperature. The peak magnitude of autotrophic dinophyceae and ciliates was, on the other hand, lowered with combined warming and acidification. Over time, the plankton communities shifted from autotrophic phytoplankton blooms to a more heterotrophic system in all mesocosms, especially in the control unaltered mesocosms. The development of mass balance and proportion of heterotrophic/autotrophic biomass predict a shift towards a more autotrophic community and less-efficient food web transfer when temperature, nutrients and acidification are combined in a future climate-change scenario. We suggest that this result may be related to a lower food quality for microzooplankton under acidification and warming scenarios and to an increase of catabolic processes compared to anabolic ones at higher temperatures.


Assuntos
Cilióforos/fisiologia , Diatomáceas/fisiologia , Dinoflagellida/fisiologia , Modelos Estatísticos , Fitoplâncton/fisiologia , Biomassa , Clorofila/biossíntese , Clorofila A , Clima , Mudança Climática , Eutrofização , Cadeia Alimentar , Previsões , Processos Heterotróficos , Concentração de Íons de Hidrogênio , Noruega , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...