Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2431, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508475

RESUMO

Diodes are key elements for electronics, optics, and detection. Their evolution towards low dissipation electronics has seen the hybridization with superconductors and the realization of supercurrent diodes with zero resistance in only one direction. Here, we present the quasi-particle counterpart, a superconducting tunnel diode with zero conductance in only one direction. The direction-selective propagation of the charge has been obtained through the broken electron-hole symmetry induced by the spin selection of the ferromagnetic tunnel barrier: a EuS thin film separating a superconducting Al and a normal metal Cu layer. The Cu/EuS/Al tunnel junction achieves a large rectification (up to ∼40%) already for a small voltage bias (∼200 µV) thanks to the small energy scale of the system: the Al superconducting gap. With the help of an analytical theoretical model we can link the maximum rectification to the spin polarization (P) of the barrier and describe the quasi-ideal Shockley-diode behavior of the junction. This cryogenic spintronic rectifier is promising for the application in highly-sensitive radiation detection for which two different configurations are evaluated. In addition, the superconducting diode may pave the way for future low-dissipation and fast superconducting electronics.

2.
Phys Rev Lett ; 128(16): 167701, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35522505

RESUMO

A conventional superconductor sandwiched between two ferromagnets can maintain coherent equilibrium spin current. This spin supercurrent results from the rotation of odd-frequency spin correlations induced in the superconductor by the magnetic proximity effect. In the absence of intrinsic magnetization, the superconductor cannot maintain multiple rotations of the triplet component but instead provides a Josephson type weak link for the spin supercurrent. We determine the analog of the current-phase relation in various circumstances and show how it can be accessed in experiments on dynamic magnetization. In particular, concentrating on the magnetic hysteresis and the ferromagnetic resonance response, we show how the spin supercurrent affects the nonequilibrium dynamics of magnetization which depends on a competition between spin supercurrent mediated static exchange contribution and a dynamic spin pumping contribution. Depending on the outcome of this competition, a mode crossing in the system can either be an avoided crossing or mode locking.

3.
Phys Rev Lett ; 128(17): 177001, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35570454

RESUMO

We calculate the nonreciprocal critical current and quantify the supercurrent diode effect in two-dimensional Rashba superconductors with arbitrary disorder, using the quasiclassical Eilenberger equation. The nonreciprocity is caused by the helical superconducting state, which appears when both inversion and time-reversal symmetries are broken. In the absence of disorder, we find a very strong diode effect, with the nonreciprocity exceeding 40% at optimal temperatures, magnetic fields, and spin-orbit coupling. We establish that the effect persists even in the presence of strong disorder. We show that the sign of the diode effect changes as magnetic field and disorder are increased, reflecting the changes in the nature of the helical state.

4.
Phys Rev Lett ; 125(8): 087002, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32909764

RESUMO

Recent experiments have shown that proximity with high-temperature superconductors induces unconventional superconducting correlations in graphene. Here, we demonstrate that those correlations propagate hundreds of nanometers, allowing for the unique observation of d-wave Andreev-pair interferences in YBa_{2}Cu_{3}O_{7}-graphene devices that behave as a Fabry-Perot cavity. The interferences show as a series of pronounced conductance oscillations analogous to those originally predicted by de Gennes-Saint-James for conventional metal-superconductor junctions. The present demonstration is pivotal to the study of exotic directional effects expected for nodal superconductivity in Dirac materials.

5.
Phys Rev Lett ; 119(6): 067001, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949615

RESUMO

We investigate the transport properties of a junction consisting of an electron-hole bilayer in contact with normal and superconducting leads. The electron-hole bilayer is considered as a semimetal with two electronic bands. We assume that in the region between the contacts the system hosts an exciton condensate described by a BCS-like model with a gap Γ in the quasiparticle density of states. We first discuss how the subgap electronic transport through the junction is mainly governed by the interplay between two kinds of reflection processes at the interfaces: the standard Andreev reflection at the interface between the superconductor and the exciton condensate, and a coherent crossed reflection at the semimetal-exciton-condensate interface that converts electrons from one layer into the other. We show that the differential conductance of the junction shows a minimum at voltages of the order of Γ/e. Such a minimum can be seen as a direct hallmark of the existence of the gapped excitonic state.

6.
Nat Commun ; 8: 14984, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28401951

RESUMO

The Josephson effect is a fundamental quantum phenomenon where a dissipationless supercurrent is introduced in a weak link between two superconducting electrodes by Andreev reflections. The physical details and topology of the junction drastically modify the properties of the supercurrent and a strong enhancement of the critical supercurrent is expected to occur when the topology of the junction allows an emergence of Majorana bound states. Here we report charge transport measurements in mesoscopic Josephson junctions formed by InAs nanowires and Ti/Al superconducting leads. Our main observation is a colossal enhancement of the critical supercurrent induced by an external magnetic field applied perpendicular to the substrate. This striking and anomalous supercurrent enhancement cannot be described by any known conventional phenomenon of Josephson junctions. We consider these results in the context of topological superconductivity, and show that the observed critical supercurrent enhancement is compatible with a magnetic field-induced topological transition.

7.
Nat Nanotechnol ; 11(12): 1055-1059, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27618256

RESUMO

Multi-terminal superconducting Josephson junctions based on the proximity effect offer the opportunity to tailor non-trivial quantum states in nanoscale weak links. These structures can realize exotic topologies in several dimensions, for example, artificial topological superconductors that are able to support Majorana bound states, and pave the way to emerging quantum technologies and future quantum information schemes. Here we report the realization of a three-terminal Josephson interferometer based on a proximized nanosized weak link. Our tunnelling spectroscopy measurements reveal transitions between gapped (that is, insulating) and gapless (conducting) states that are controlled by the phase configuration of the three superconducting leads connected to the junction. We demonstrate the topological nature of these transitions: a gapless state necessarily occurs between two gapped states of different topological indices, in much the same way that the interface between two insulators of different topologies is necessarily conducting. The topological numbers that characterize such gapped states are given by superconducting phase windings over the two loops that form the Josephson interferometer. As these gapped states cannot be transformed to one another continuously without passing through a gapless condition, they are topologically protected. The same behaviour is found for all of the points of the weak link, confirming that this topology is a non-local property. Our observation of the gapless state is pivotal for enabling phase engineering of different and more sophisticated artificial topological materials.

8.
Phys Rev Lett ; 114(16): 167002, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25955071

RESUMO

We describe far-from-equilibrium nonlocal transport in a diffusive superconducting wire with a Zeeman splitting, taking into account different spin relaxation mechanisms. We demonstrate that due to the Zeeman splitting, an injection of current in a superconducting wire creates spin accumulation that can only relax via thermalization. This effect leads to a long-range spin accumulation detectable in the nonlocal signal. Our model gives a qualitative explanation and provides accurate fits of recent experimental results in terms of realistic parameters.

9.
Phys Rev Lett ; 114(6): 067001, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25723238

RESUMO

The concept of thermophase refers to the appearance of a phase gradient inside a superconductor originating from the presence of an applied temperature bias across it. The resulting supercurrent flow may, in suitable conditions, fully counterbalance the temperature-bias-induced quasiparticle current therefore preventing the formation of any voltage drop, i.e., a thermovoltage, across the superconductor. Yet, the appearance of a thermophase is expected to occur in Josephson-coupled superconductors as well. Here, we theoretically investigate the thermoelectric response of a thermally biased Josephson junction based on a ferromagnetic insulator. In particular, we predict the occurrence of a very large thermophase that can reach π/2 across the contact for suitable temperatures and structure parameters; i.e., the quasiparticle thermal current can reach the critical current. Such a thermophase can be several orders of magnitude larger than that predicted to occur in conventional Josephson tunnel junctions. In order to assess experimentally the predicted very large thermophase, we propose a realistic setup realizable with state-of-the-art nanofabrication techniques and well-established materials, based on a superconducting quantum interference device. This effect could be of strong relevance in several low-temperature applications, for example, for revealing tiny temperature differences generated by coupling the electromagnetic radiation to one of the superconductors forming the junction.

10.
Nano Lett ; 15(3): 1803-8, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25671540

RESUMO

We have studied mesoscopic Josephson junctions formed by highly n-doped InAs nanowires and superconducting Ti/Pb source and drain leads. The current-voltage properties of the system are investigated by varying temperature and external out-of-plane magnetic field. Superconductivity in the Pb electrodes persists up to ∼7 K and with magnetic field values up to 0.4 T. Josephson coupling at zero backgate voltage is observed up to 4.5 K and the critical current is measured to be as high as 615 nA. The supercurrent suppression as a function of the magnetic field reveals a diffraction pattern that is explained by a strong magnetic flux focusing provided by the superconducting electrodes forming the junction.

11.
Phys Rev Lett ; 112(5): 057001, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24580623

RESUMO

We show that a huge thermoelectric effect can be observed by contacting a superconductor whose density of states is spin split by a Zeeman field with a ferromagnet with a nonzero polarization. The resulting thermopower exceeds kB/e by a large factor, and the thermoelectric figure of merit ZT can far exceed unity, leading to heat engine efficiencies close to the Carnot limit. We also show that spin-polarized currents can be generated in the superconductor by applying a temperature bias.

12.
Nat Commun ; 5: 3048, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24401841

RESUMO

Spin selectivity in a ferromagnet results from a difference in the density of up- and down-spin electrons at the Fermi energy as a consequence of which the scattering rates depend on the spin orientation of the electrons. This property is utilized in spintronics to control the flow of electrons by ferromagnets in a ferromagnet (F1)/normal metal (N)/ferromagnet (F2) spin valve, where F1 acts as the polarizer and F2 the analyser. The feasibility of superconducting spintronics depends on the spin sensitivity of ferromagnets to the spin of the equal spin-triplet Cooper pairs, which arise in superconductor (S)-ferromagnet (F) heterostructures with magnetic inhomogeneity at the S-F interface. Here we report a critical temperature dependence on magnetic configuration in current-in-plane F-S-F spin valves with a holmium spin mixer at the S-F interface providing evidence of a spin selectivity of the ferromagnets to the spin of the triplet Cooper pairs.

13.
Phys Rev Lett ; 110(17): 177001, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679759

RESUMO

Magnetization noncollinearity in ferromagnet-superconductor (F/S) heterostructures is expected to enhance the superconducting transition temperature (T(c)) according to the domain-wall superconductivity theory, or to suppress T(c) when spin-triplet Cooper pairs are explicitly considered. We study the proximity effect in F/S structures where the F layer is a Sm-Co/Py exchange-spring bilayer and the S layer is Nb. The exchange-spring contains a single, controllable and quantifiable domain wall in the Py layer. We observe an enhancement of superconductivity that is nonmonotonic as the Py domain wall is increasingly twisted via rotating a magnetic field, different from theoretical predictions. We have excluded magnetic fields and vortex motion as the source of the nonmonotonic behavior. This unanticipated proximity behavior suggests that new physics is yet to be captured in the theoretical treatments of F/S systems containing noncollinear magnetization.

14.
Phys Rev Lett ; 110(11): 117003, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25166565

RESUMO

The long-range proximity effect in superconductor-ferromagnet (S/F) hybrid nanostructures is observed if singlet Cooper pairs from the superconductor are converted into triplet pairs which can diffuse into the ferromagnet over large distances. It is commonly believed that this happens only in the presence of magnetic inhomogeneities. We show that there are other sources of the long-range triplet component (LRTC) of the condensate and establish general conditions for their occurrence. As a prototypical example, we consider first a system where the exchange field and spin-orbit coupling can be treated as time and space components of an effective SU(2) potential. We derive a SU(2) covariant diffusive equation for the condensate and demonstrate that an effective SU(2) electric field is responsible for the long-range proximity effect. Finally, we extend our analysis to a generic ferromagnet and establish a universal condition for the LRTC. Our results open a new avenue in the search for such correlations in S/F structures and make a hitherto unknown connection between the LRTC and Yang-Mills electrostatics.

15.
Phys Rev Lett ; 110(15): 157003, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25167301

RESUMO

The proximity effect between a superconductor and a highly diffusive two-dimensional metal is revealed in a scanning tunneling spectroscopy experiment. The in situ elaborated samples consist of superconducting single crystalline Pb islands interconnected by a nonsuperconducting atomically thin disordered Pb wetting layer. In the vicinity of each superconducting island the wetting layer acquires specific tunneling characteristics which reflect the interplay between the proximity-induced superconductivity and the inherent electron correlations of this ultimate diffusive two-dimensional metal. The observed spatial evolution of the tunneling spectra is accounted for theoretically by combining the Usadel equations with the theory of dynamical Coulomb blockade; the relevant length and energy scales are extracted and found in agreement with available experimental data.

16.
Phys Rev Lett ; 105(11): 117001, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20867598

RESUMO

We present a microscopic theory of the effect of a microwave field on the supercurrent through a quantum point contact of arbitrary transmission. Our theory predicts that (i) for low temperatures and weak fields, the supercurrent is suppressed at certain values of the superconducting phase, (ii) at strong fields, the current-phase relation is strongly modified and the current can even reverse its sign, and (iii) at finite temperatures, the microwave field can enhance the critical current of the junction. Apart from their fundamental interest, our findings are also important for the description of experiments that aim at the manipulation of the quantum state of atomic point contacts.

17.
Phys Rev Lett ; 99(21): 217002, 2007 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-18233242

RESUMO

We study theoretically the electronic and transport properties of a diffusive superconductor-normal metal-superconductor junction in the presence of a perpendicular magnetic field. We show that the field dependence of the critical current crosses over from the well-known Fraunhofer pattern in wide junctions to a monotonic decay when the width of the normal wire is smaller than the magnetic length xi(H)=square root Phi(0)/H, where H is the magnetic field and Phi(0) the flux quantum. We demonstrate that this behavior is a direct consequence of the magnetic vortex structure appearing in the normal region and predict how this structure is manifested in the local density of states.

18.
Phys Rev Lett ; 90(11): 117006, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12688960

RESUMO

We demonstrate that in multilayered superconductor-ferromagnet structures a noncollinear alignment of the magnetizations of different ferromagnetic layers generates a triplet superconducting condensate which is odd in frequency. This triplet condensate coexists in the superconductors with the conventional singlet one but decays very slowly in the ferromagnet, which should lead to a large Josephson effect between the superconductors separated by the ferromagnet. Depending on the mutual direction of the ferromagnetic moments, the Josephson coupling can be both of 0 and of pi type.

19.
Phys Rev Lett ; 86(18): 4096-9, 2001 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-11328104

RESUMO

We analyze the proximity effect in a superconductor/ferromagnet (S/F) structure with a local inhomogeneity of the magnetization in the ferromagnet near the S/F interface. We demonstrate that not only the singlet but also the triplet component of the superconducting condensate is induced in the ferromagnet due to the proximity effect. The singlet component penetrates into the ferromagnet over a short length xi(h) = sqrt[D/h] ( h is the exchange field and D the diffusion coefficient), whereas the triplet component penetrates over a long length sqrt[D/epsilon] and leads to a significant increase of the ferromagnet conductance below the superconducting critical temperature Tc.

20.
Phys Rev Lett ; 86(14): 3140-3, 2001 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-11290127

RESUMO

We calculate the dc Josephson current for two superconductor/ferromagnet (S/F) bilayers separated by a thin insulating film. It is demonstrated that the critical Josephson current I(c) in the junction strongly depends on the relative orientation of the effective exchange field h of the bilayers. We found that in the case of an antiparallel orientation I(c) increases at low temperatures with increasing h and at zero temperature has a singularity when h equals the superconducting gap Delta. This striking behavior contrasts with the suppression of the critical current by the magnetic moments aligned in parallel and is an interesting new effect of the interplay between superconductors and ferromagnets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...