Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(39): 34921-34928, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36211053

RESUMO

Strain-promoted azide-alkyne cycloaddition (SPAAC) reactions like click chemistry have the potential to be highly scalable, robust, and cost-effective methods for generating small- and large-molecule conjugates for a variety of applications. However, despite method improvements, the rates of copper-based click chemistry reactions continue to be much faster than the rates of copper-free click chemistry reactions, which makes broader deployment of click chemistry challenging from a safety and compatibility standpoint. In this study, we used a zwitterionic detergent, namely, lauryldimethylamine N-oxide (LDAO), in a copper-free click chemistry reaction to investigate its impact on the generation of conjugate vaccines (CVs). For this, we utilized an Xpress cell-free protein synthesis (CFPS) platform to generate a proprietary variant of CRM197 (eCRM) containing non-native amino acids (nnAA) with azide-containing side chains as a carrier protein for conjugation to several clinically relevant dibenzocyclooctyne (DBCO)-derivatized S. pneumoniae serotypes (types 3, 5, 18C, and 19A). For conjugation, we performed copper-free click chemistry in the presence and absence of LDAO. Our results show that the addition of LDAO significantly enhanced the reaction kinetics to generate larger conjugates, which were similarly immunogenic and equally stable to conjugates generated without LDAO. Most importantly, the addition of LDAO substantially improved the efficiency of the conjugation process. Thus, our results for the first time show that the addition of a zwitterionic surfactant to a copper-free click chemistry reaction can significantly accelerate the reaction kinetics along with improving the efficiency of the conjugation process.

2.
Appl Microbiol Biotechnol ; 106(1): 401-414, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34932164

RESUMO

Shigella spp. invade the colonic epithelium and cause bacillary dysentery in humans. Individuals living in areas that lack access to clean water and sanitation are the most affected. Even though infection can be treated with antibiotics, Shigella antimicrobial drug resistance complicates clinical management. Despite decades of effort, there are no licensed vaccines to prevent shigellosis. The highly conserved invasion plasmid antigens (Ipa), which are components of the Shigella type III secretion system, participate in bacterial epithelial cell invasion and have been pursued as vaccine targets. However, expression and purification of these proteins in conventional cell-based systems have been challenging due to solubility issues and extremely low recovery yields. These difficulties have impeded manufacturing and clinical advancement. In this study, we describe a new method to express Ipa proteins using the Xpress+TM cell-free protein synthesis (CFPS) platform. Both IpaB and the C-terminal domain of IpaH1.4 (IpaH-CTD) were efficiently produced with this technology at yields > 200 mg/L. Furthermore, the expression was linearly scaled in a bioreactor under controlled conditions, and proteins were successfully purified using multimode column chromatography to > 95% purity as determined by SDS-PAGE. Biophysical characterization of the cell-free synthetized IpaB and IpaH-CTD using SEC-MALS analysis showed well-defined oligomeric states of the proteins in solution. Functional analysis revealed similar immunoreactivity as compared to antigens purified from E. coli. These results demonstrate the efficiency of CFPS for Shigella protein production; the practicality and scalability of this method will facilitate production of antigens for Shigella vaccine development and immunological analysis. KEY POINTS : • First report of Shigella IpaB and IpaH produced at high purity and yield using CFPS • CFPS-IpaB and IpaH perform similarly to E. coli-produced proteins in immunoassays • CFPS-IpaB and IpaH react with Shigella-specific human antibodies and are immunogenic in mice.


Assuntos
Escherichia coli , Shigella , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Escherichia coli/genética , Camundongos , Plasmídeos/genética , Shigella flexneri , Desenvolvimento de Vacinas
3.
Vaccine ; 39(23): 3197-3206, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33965258

RESUMO

Despite widespread utilization of pneumococcal conjugate vaccines (PCVs) and the resultant disease reduction, the development of PCVs containing additional serotypes remains a public health priority due to serotype replacement and the resultant shift to non-vaccine containing serotypes. However, incorporating additional serotypes to existing PCVs using conventional technologies has proven problematic. Immune responses to individual serotypes have consistently decreased as more polysaccharide-conjugates are added due to carrier suppression. Using our proprietary cell-free protein synthesis (CFPS) platform, we have successfully produced eCRM® based on the CRM197 sequence for use as an enhanced carrier protein to develop a 24-valent PCV. The eCRM carrier protein contains multiple non-native amino acids (nnAAs) located outside of the primary T-cell epitope regions, thereby enabling site-specific covalent conjugation of the pneumococcal polysaccharides to the nnAAs to consistently expose the critical T-cell epitopes. eCRM also serves to reduce structural heterogeneity associated with classic reductive-amination conjugation while promoting formation of the conjugate matrix structures, the hallmark of PCVs. This process serves to increase the overall polysaccharide:protein ratio, enabling the inclusion of more serotypes while minimizing carrier-mediated immunological interference. The aim of this non-clinical study was to construct a 24-valent PCV and evaluate its immunogenicity. Using the XPressCF® CFPS platform, the eCRM carrier protein was separately conjugated through nnAAs to each of the 24 pneumococcal polysaccharides through click chemistry and mixed with aluminum phosphate to produce VAX-24, Vaxcyte's proprietary PCV preclinical candidate. VAX-24, Prevnar13® and Pneumovax®23 were administered to New Zealand White rabbits to compare the resulting opsonophagocytic activity (OPA) and anti-capsular IgG antibodies. VAX-24 showed conjugate-like immune responses to all 24 serotypes based on comparable OPA and IgG responses to Prevnar13 and higher responses than Pneumovax 23. This study demonstrates the utility of site-specific conjugation technology in a preclinical setting and the potential for a PCV with improved serotype coverage.


Assuntos
Proteínas de Transporte , Infecções Pneumocócicas , Animais , Anticorpos Antibacterianos , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , Coelhos , Padrão de Cuidado , Streptococcus pneumoniae , Vacinas Conjugadas
4.
Sci Rep ; 11(1): 6267, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737644

RESUMO

Antigen-adjuvant conjugation is known to enhance antigen-specific T-cell production in vaccine models, but scalable methods are required to generate site-specific conjugation for clinical translation of this technique. We report the use of the cell-free protein synthesis (CFPS) platform as a rapid method to produce large quantities (> 100 mg/L) of a model antigen, ovalbumin (OVA), with site-specific incorporation of p-azidomethyl-L-phenylalanine (pAMF) at two solvent-exposed sites away from immunodominant epitopes. Using copper-free click chemistry, we conjugated CpG oligodeoxynucleotide toll-like receptor 9 (TLR9) agonists to the pAMF sites on the mutant OVA protein. The OVA-CpG conjugates demonstrate enhanced antigen presentation in vitro and increased antigen-specific CD8+ T-cell production in vivo. Moreover, OVA-CpG conjugation reduced the dose of CpG needed to invoke antigen-specific T-cell production tenfold. These results highlight how site-specific conjugation and CFPS technology can be implemented to produce large quantities of covalently-linked antigen-adjuvant conjugates for use in clinical vaccines.


Assuntos
Adjuvantes Imunológicos/metabolismo , Apresentação de Antígeno , Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteínas Mutantes/imunologia , Oligodesoxirribonucleotídeos/imunologia , Ovalbumina/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos/genética , Sistema Livre de Células , Química Click/métodos , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Oligodesoxirribonucleotídeos/metabolismo , Oligodesoxirribonucleotídeos/farmacologia , Ovalbumina/genética , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Transfecção , Vacinação/métodos , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
5.
Front Oral Health ; 2: 686402, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35048031

RESUMO

Periodontal diseases are chronic inflammatory diseases of the periodontium that result in progressive destruction of the soft and hard tissues supporting the teeth, and it is the most common cause of tooth loss among adults. In the US alone, over 100 million individuals are estimated to have periodontal disease. Subgingival bacteria initiate and sustain inflammation, and, although several bacteria have been associated with periodontitis, Porphyromonas gingivalis has emerged as the key etiological organism significantly contributing to the disease. Currently, intensive clinical maintenance strategies are deployed to mitigate the further progression of disease in afflicted individuals; however, these treatments often fail to stop disease progression, and, as such, the development of an effective vaccine for periodontal disease is highly desirable. We generated a conjugate vaccine, comprising of the purified capsular polysaccharide of P. gingivalis conjugated to eCRM®, a proprietary and enhanced version of the CRM197 carrier protein with predetermined conjugation sites (Pg-CV). Mice immunized with alum adjuvanted Pg-CV developed robust serum levels of whole organism-specific IgG in comparison to animals immunized with unconjugated capsular polysaccharide alone. Using the murine oral bone loss model, we observed that mice immunized with the capsule-conjugate vaccine were significantly protected from the effects of P. gingivalis-elicited oral bone loss. Employing a preclinical model of infection-elicited oral bone loss, our data support that a conjugate vaccine incorporating capsular polysaccharide antigen is effective in reducing the main clinical endpoint of periodontal disease-oral bone destruction. Further development of a P. gingivalis capsule-based conjugate vaccine for preventing periodontal diseases is supported.

6.
Biochemistry ; 57(5): 516-519, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29323879

RESUMO

Malaria, one of the most common vector borne human diseases, is a major world health issue. In 2015 alone, more than 200 million people were infected with malaria, out of which, 429 000 died. Even though artemisinin-based combination therapies (ACT) are highly effective at treating malaria infections, novel efforts toward development of vaccines to prevent transmission are still needed. Pfs25, a postfertilization stage parasite surface antigen, is a leading transmission-blocking vaccine (TBV) candidate. It is postulated that Pfs25 anchors to the cell membrane using a glycosylphosphatidylinositol (GPI) linker, which itself possesses pro-inflammatory properties. In this study, Escherichia coli derived extract (XtractCF+TM) was used in cell free protein synthesis [CFPS] to successfully express >200 mg/L of recombinant Pfs25 with a C-terminal non-natural amino acid (nnAA), namely, p-azidomethyl phenylalanine (pAMF), which possesses a reactive azide group. Thereafter, a unique conjugate vaccine (CV), namely, Pfs25-GPI was generated with dibenzocyclooctyne (DBCO) derivatized glycan core of malaria GPI using a simple but highly efficient copper free click chemistry reaction. In mice immunized with Pfs25 or Pfs25-GPI, the Pfs25-GPI group showed significantly higher titers compared to the Pfs25 group. Moreover, only purified IgGs from Pfs25-GPI group were able to significantly block transmission of parasites to mosquitoes, as judged by a standard membrane feeding assay [SMFA]. To our knowledge, this is the first report of the generation of a CV using Pfs25 and malaria specific GPI where the GPI is shown to enhance the ability of Pfs25 to elicit transmission blocking antibodies.


Assuntos
Glicosilfosfatidilinositóis/uso terapêutico , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Proteínas de Protozoários/uso terapêutico , Animais , Formação de Anticorpos , Glicosilfosfatidilinositóis/imunologia , Humanos , Imunização , Malária , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/transmissão , Camundongos , Proteínas de Protozoários/imunologia , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/uso terapêutico , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/uso terapêutico
7.
Biotechnol Prog ; 26(6): 1654-61, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20827718

RESUMO

The impact of typical anion-exchange flowthrough conditions on the IgG mass loading of an anion-exchange membrane scale-down unit (Mustang Q coin) was investigated. High performance size-exclusion chromatography and multiangle laser light scattering results suggested the presence of a small fraction of IgG aggregates with average radius >100 nm under anion-exchange flowthrough conditions. The small filtration area presented by the 0.35 mL membrane volume Mustang Q coin limited the membrane throughput due to fouling from the aggregates at higher antibody loading. Data in this report indicated that a 0.2 µm hybrid polyethersulfone and polyvinylidene fluoride membrane in-line prefilter with a minimum filtration area of 20 sq cm alleviated the Mustang Q coin fouling. The combined cake filtration and intermediate blocking model was proposed as the most likely membrane pore blocking mechanism. Increasing the filtration area in the in-line prefilter resulted in higher IgG mass throughput. Thus, using an appropriately sized in-line prefilter could provide more robust antibody throughput performance on scale-down membrane anion-exchange units.


Assuntos
Imunoglobulina G/química , Membranas Artificiais , Ânions/química , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Lasers , Tamanho da Partícula , Espalhamento de Radiação , Propriedades de Superfície
8.
Biochemistry ; 41(51): 15304-14, 2002 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-12484769

RESUMO

The low redox potential of 8-oxo-7,8-dihydroguanine (OG), a molecule regarded as a marker of oxidative damage in cells, makes it an easy target for further oxidation. Using a temperature-dependent method of synthesis, the oxidation products of OG, guanidinohydantoin (Gh) and/or its isomer iminoallantoin (Ia) as well as spiroiminodihydantoin (Sp), have been site-specifically incorporated into DNA oligomers. Single nucleotide insertion and primer extension experiments using Escherichia coli Kf exo(-) DNA polymerase were carried out under "standing start" and "running start" conditions in various sequence contexts. dAMP and dGMP were found to be inserted opposite these OG oxidation products. Steady-state kinetic studies show that the Gh/Ia.G base pair yields a lower K(m) value compared to the Sp.G pair or X.A (X = Gh/Ia or Sp). Running start experiments using oxidized and unoxidized OG-containing templates showed enhanced full extension in the presence of all four dNTPs. A sequence preference for efficiency of extension was found when Gh/Ia and Sp are present in the DNA template, possibly leading to primer misalignment. Full extension is more efficient for the templates containing two Gs immediately 3' to the lesions compared to two As. Although these lesions cause a significant block for DNA elongation, results show that they are more easily bypassed by the polymerase when situated in the appropriate sequence context. UV melting studies carried out on duplexes mimicking the template/primer systems were used to characterize thermal stability of the duplexes. These experiments suggest that both Gh/Ia and Sp destabilize the duplex to a much greater extent than OG, with Sp being most severe.


Assuntos
Pareamento Incorreto de Bases , Dano ao DNA , DNA Polimerase I/química , DNA Bacteriano/síntese química , Guanidinas/química , Guanina/análogos & derivados , Guanosina/análogos & derivados , Guanosina/química , Compostos de Espiro/química , Primers do DNA/biossíntese , Desoxirribonucleotídeos/síntese química , Desoxirribonucleotídeos/química , Proteínas de Escherichia coli/química , Guanina/química , Temperatura Alta , Irídio/química , Cinética , Mutagênese Sítio-Dirigida , Desnaturação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/química , Oxidantes/química , Oxirredução , Espectrofotometria Ultravioleta , Moldes Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...