Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Appl Clin Med Phys ; : e14269, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38235952

RESUMO

INTRODUCTION: Dynamic tumor tracking (DTT) is a motion management technique where the radiation beam follows a moving tumor in real time. Not modelling DTT beam motion in the treatment planning system leaves an organ at risk (OAR) vulnerable to exceeding its dose limit. This work investigates two planning strategies for DTT plans, the "Boolean OAR Method" and the "Aperture Sorting Method," to determine if they can successfully spare an OAR while maintaining sufficient target coverage. MATERIALS AND METHODS: A step-and-shoot intensity modulated radiation therapy (sIMRT) treatment plan was re-optimized for 10 previously treated liver stereotactic ablative radiotherapy patients who each had one OAR very close to the target. Two planning strategies were investigated to determine which is more effective at sparing an OAR while maintaining target coverage: (1) the "Boolean OAR Method" created a union of an OAR's contours from two breathing phases (exhale and inhale) on the exhale phase (the planning CT) and protected this combined OAR during plan optimization, (2) the "Aperture Sorting Method" assigned apertures to the breathing phase where they contributed the least to an OAR's maximum dose. RESULTS: All 10 OARs exceeded their dose constraints on the original plan four-dimensional (4D) dose distributions and average target coverage was V100%  = 91.3% ± 2.9% (ranging from 85.1% to 94.8%). The "Boolean OAR Method" spared 7/10 OARs, and mean target coverage decreased to V100%  = 87.1% ± 3.8% (ranging from 80.7% to 93.7%). The "Aperture Sorting Method" spared 9/10 OARs and the mean target coverage remained high at V100%  = 91.7% ± 2.8% (ranging from 84.9% to 94.5%). CONCLUSIONS: 4D planning strategies are simple to implement and can improve OAR sparing during DTT treatments. The "Boolean OAR Method" improved sparing of OARs but target coverage was reduced. The "Aperture Sorting Method" further improved sparing of OARs and maintained target coverage.

2.
J Med Phys ; 48(1): 50-58, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342609

RESUMO

Purpose and Aim: The Vero4DRT (Brainlab AG) linear accelerator is capable of dynamic tumor tracking (DTT) by panning/tilting the radiation beam to follow respiratory-induced tumor motion in real time. In this study, the panning/tilting motion is modeled in Monte Carlo (MC) for quality assurance (QA) of four-dimensional (4D) dose distributions created within the treatment planning system (TPS). Materials and Methods: Step-and-shoot intensity-modulated radiation therapy plans were optimized for 10 previously treated liver patients. These plans were recalculated on multiple phases of a 4D computed tomography (4DCT) scan using MC while modeling panning/tilting. The dose distributions on each phase were accumulated to create a respiratory-weighted 4D dose distribution. Differences between the TPS and MC modeled doses were examined. Results: On average, 4D dose calculations in MC showed the maximum dose of an organ at risk (OAR) to be 10% greater than the TPS' three-dimensional dose calculation (collapsed cone [CC] convolution algorithm) predicted. MC's 4D dose calculations showed that 6 out of 24 OARs could exceed their specified dose limits, and calculated their maximum dose to be 4% higher on average (up to 13%) than the TPS' 4D dose calculations. Dose differences between MC and the TPS were greatest in the beam penumbra region. Conclusion: Modeling panning/tilting for DTT has been successfully modeled with MC and is a useful tool to QA respiratory-correlated 4D dose distributions. The dose differences between the TPS and MC calculations highlight the importance of using 4D MC to confirm the safety of OAR doses before DTT treatments.

3.
Int J Radiat Oncol Biol Phys ; 114(5): 856-861, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35840110

RESUMO

PURPOSE: A subset of patients with oligometastatic cancer experience early widespread cancer dissemination and do not benefit from metastasis-directed therapy such as SABR. This study aimed to identify factors associated with early polymetastatic relapse (PMR). METHODS AND MATERIALS: The SABR-5 trial was a single arm phase 2 study conducted at all 6 regional cancer centers across British Columbia (BC), Canada. SABR for oligometastases was only offered on trial. Patients with up to 5 oligometastatic lesions (total, progressing, or induced) received SABR to all lesions. Patients were 18 years of age or older, Eastern Cooperative Oncology Group 0 to 2 and life expectancy ≥6 months. This secondary analysis evaluated factors associated with early PMR, defined as disease recurrence within 6 months of SABR, which is not amenable to further local treatment. Univariable and multivariable analyses were performed using binary logistic regression. The Kaplan-Meier method and log-rank tests assessed PMR-free survival and differences between risk groups, respectively. RESULTS: Between November 2016 and July 2020, 381 patients underwent treatment on SABR-5. A total of 16% of patients experienced PMR. Worse performance status (Eastern Cooperative Oncology Group 1-2 vs 0; hazard ratio [HR] = 2.01, P = .018), nonprostate/breast histology (HR = 3.64, P <.001), and oligoprogression (HR = 3.84, P <.001) were independent predictors for early PMR. Risk groups were identified with median PMR-free survival ranging from 5 months to not yet reached at the time of analysis. Rates of 3-year overall survival were 0%, 53% (95% confidence interval [CI], 48-58), 77% (95% CI, 73-81), and 93% (95% CI, 90-96) in groups 1 to 4, respectively (P <.001). CONCLUSIONS: Four distinct risk groups for early PMR are identified, which differ significantly in PMR-free survival and overall survival. The group with all 3 risk factors had a median PMR-free survival of 5 months and may not benefit from local ablative therapy alone. This model should be externally validated with data from other prospective trials.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Humanos , Adolescente , Adulto , Radiocirurgia/métodos , Estudos Prospectivos , Recidiva Local de Neoplasia/etiologia , Colúmbia Britânica/epidemiologia , Neoplasias Pulmonares/etiologia
4.
BMC Cancer ; 22(1): 673, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725457

RESUMO

BACKGROUND: A novel device for supine positioning in breast radiotherapy for patients with large or pendulous breasts has been developed and tested in phase II studies. This trial is designed to assess the efficacy of the device to reduce skin toxicity and unwanted normal tissue dose in comparison to the current clinical standard for supine breast support during breast radiotherapy. METHODS: Patients at high risk for moist desquamation, having infra-mammary fold or lateral ptosis, will be randomized into two arms. Patients in the control arm will receive breast radiotherapy with supine positioning using current standard of care. Patients in the experimental arm will be positioned supine with the novel device. The primary endpoint is the incidence of moist desquamation in the infra-mammary fold. We hypothesize a 20% reduction (from 50 to 30%) in the rate of moist desquamation in the study arm versus the control arm. For 80% power, two-tailed α = 0.05 and 10% loss to follow up, 110 patients will be assigned to each arm. The proportion of patients experiencing moist desquamation in the two arms will be compared using logistic regression adjusting for brassiere cup size, skin fold size, body mass index, smoking status, and dose fractionation schedule. An unadjusted comparison will also be made using the chi-square test, or Fisher's exact test, if appropriate. Secondary endpoints include dose-volume statistics for the lung and heart, skin dose and clinical parameters including setup time, reproducibility, and staff experience with setup procedures. Patient-reported pain, skin condition interference with sleep and daily activities, and comfort during treatment are also secondary endpoints. DISCUSSION: Based on results from earlier phase II studies, it is expected that the device-enabled elimination of infra-mammary fold should reduce toxicity and improve quality of life for this patient population. Earlier studies showed reduction in dose to organs at risk including lung and heart, indicating potential for other long-term benefits for patients using the device. This study is limited to acute skin toxicity, patient-reported outcomes, and clinical factors to inform integration of the device into standard breast radiotherapy procedures. TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT04257396 . Registered February 6 2020.


Assuntos
Neoplasias da Mama , Dermatopatias , Neoplasias da Mama/etiologia , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Fibra de Carbono , Ensaios Clínicos Fase III como Assunto , Feminino , Humanos , Mastectomia Segmentar/métodos , Estudos Multicêntricos como Assunto , Qualidade de Vida , Radioterapia Adjuvante/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Reprodutibilidade dos Testes
5.
Int J Radiat Oncol Biol Phys ; 114(4): 617-626, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35667528

RESUMO

PURPOSE: Despite increasing utilization of SABR for oligometastatic cancer, prospective outcomes are lacking. The purpose of this study was to determine progression-free survival (PFS), local control (LC), and prognostic factors from the population-based phase 2 SABR-5 trial. METHODS AND MATERIALS: The SABR-5 trial was a single-arm phase 2 study with the primary endpoint of toxicity, conducted at the 6 regional cancer centers across British Columbia (BC), Canada, during which time SABR for oligometastases was only offered on trial. Patients with up to 5 oligometastases (total or not controlled by prior treatment and including induced oligometastatic disease) underwent SABR to all lesions. Patients were 18 years of age or older, had an Eastern Cooperative Oncology Group score of 0 to 2, and had life expectancy ≥ 6 months. The secondary outcomes of PFS and LC are presented here. RESULTS: Between November 2016 and July 2020, 381 patients underwent SABR on trial. Median follow-up was 27 months (interquartile range, 18-36). Median PFS was 15 months (95% confidence interval [CI], 12-18). LC at 1 and 3 years were 93% (95% CI, 91-95) and 87% (95% CI, 84-90), respectively. On multivariable analysis, increasing tumor diameter (hazard ratio [HR], 1.09; P < .001), declining performance status (HR, 2.13; P < .001), disease-free interval <18 months (HR, 1.52; P = .003), 4 or more metastases at SABR (HR, 1.48; P = .048), initiation or change in systemic treatment (HR, 0.50; P < .001), and oligoprogression (HR, 1.56; P = .008) were significant independent predictors of PFS. Tumor diameter (sub-hazard ratio [SHR], 1.28; P < .001), colorectal histology (SHR, 4.33; P = .002), and "other" histology (SHR, 3.90; P < .001) were associated with worse LC. CONCLUSIONS: In this population-based cohort including patients with genuine oligometastatic, oligoprogressive, and induced oligometastatic disease, the median PFS was 15 months and LC at 3 years was 87%. This supports ongoing efforts to randomize patients in phase 3 trials, even outside the original 1 to 5 metachronous oligometastatic paradigm.


Assuntos
Neoplasias , Radiocirurgia , Adolescente , Adulto , Colúmbia Britânica , Humanos , Intervalo Livre de Progressão , Estudos Prospectivos , Radiocirurgia/métodos
6.
J Appl Clin Med Phys ; 22(6): 16-25, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34042251

RESUMO

PURPOSE: In this study we present a novel method for re-calculating a treatment plan on different respiratory phases by accurately modeling the panning and tilting beam motion during DTT (the "rotation method"). This method is used to re-calculate the dose distribution of a plan on multiple breathing phases to accurately assess the dosimetry. METHODS: sIMRT plans were optimized on a breath hold computed tomography (CT) image taken at exhale (BHexhale ) for 10 previous liver stereotactic ablative radiotherapy patients. Our method was used to re-calculate the plan on the inhale (0%) and exhale (50%) phases of the four-dimensional CT (4DCT) image set. The dose distributions were deformed to the BHexhale CT and summed together with proper weighting calculated from the patient's breathing trace. Subsequently, the plan was re-calculated on all ten phases using our method and the dose distributions were deformed to the BHexhale CT and accumulated together. The maximum dose for certain organs at risk (OARs) was compared between calculating on two phases and all ten phases. RESULTS: In total, 26 OARs were examined from 10 patients. When the dose was calculated on the inhale and exhale phases six OARs exceeded their dose limit, and when all 10 phases were used five OARs exceeded their limit. CONCLUSION: Dynamic tumor tracking plans optimized for a single respiratory phase leave an OAR vulnerable to exceeding its dose constraint during other respiratory phases. The rotation method accurately models the beam's geometry. Using deformable image registration to accumulate dose from all 10 breathing phases provides the most accurate results, however it is a time consuming procedure. Accumulating the dose from two extreme breathing phases (exhale and inhale) and weighting them properly provides accurate results while requiring less time. This approach should be used to confirm the safety of a DTT treatment plan prior to delivery.


Assuntos
Neoplasias Pulmonares , Neoplasias , Tomografia Computadorizada Quadridimensional , Humanos , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Respiração
7.
Int J Radiat Oncol Biol Phys ; 102(5): 1560-1568, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30071294

RESUMO

PURPOSE: To assess the effect of flattening-filter-free (FFF) and 10 MV radiation therapy beams on the peripheral dose received by a population of pediatric patients undergoing volumetric modulated arc therapy (VMAT). METHODS AND MATERIALS: Twenty-six previously delivered 6 MV flattened VMAT pediatric radiation therapy treatments plans were replanned with 6 MV flattened, 6 MV FFF, and 10 MV FFF VMAT. Monte Carlo simulation code EGSnrc was used in conjunction with a measurement-based model to obtain 3-dimensional dose distributions. Peripheral dose delivered by FFF beams was compared with that delivered by 6 MV flattened beams. A statistical analysis was performed to determine whether certain clinical factors (eg, target volume, location) were associated with a change in integral relative radiation dose. Neutron dose measurements assessed the neutron contribution from the 6 MV flattened and 10 MV FFF x-ray beams. RESULTS: Both the 6 MV FFF and 10 MV FFF beams delivered significantly lower peripheral radiation doses than 6 MV flattened (P < .01). The dose reduction was of 3.9% (95% confidence interval [CI] 2.1-5.7) and 9.8% (95% CI, 8.0-11.6) at 5 cm from the PTV and 21.9% (95% CI, 13.7-30.1) and 25.6% (95% CI, 17.6-33.6) at 30 cm for 6 MV FFF and 10 MV FFF beams, respectively. The clinical factors examined did not have a significant effect on the relative magnitude of the peripheral dose reduction. The upper limit on the neutron dose was determined to be 203 µSv for the 6 MV flattened and 522 µSv for the 10 MV FFF beam. CONCLUSIONS: Both FFF beams significantly (P < .01) reduced the peripheral dose. 10 MV FFF was more effective at reducing peripheral dose at distances <5 cm from the PTV edge. The neutron doses delivered by all beams were <1% compared with the photon doses. 10 MV FFF should be used to minimize peripheral dose.


Assuntos
Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada , Criança , Estudos de Coortes , Humanos , Método de Monte Carlo , Neoplasias/radioterapia , Imagens de Fantasmas , Dosagem Radioterapêutica
8.
J Appl Clin Med Phys ; 15(3): 4686, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24892341

RESUMO

A Monte Carlo (MC) validation of the vendor-supplied Varian TrueBeam 6 MV flattened (6X) phase-space file and the first implementation of the Siebers-Keall MC MLC model as applied to the HD120 MLC (for 6X flat and 6X flattening filter-free (6X FFF) beams) are described. The MC model is validated in the context of VMAT patient-specific quality assurance. The Monte Carlo commissioning process involves: 1) validating the calculated open-field percentage depth doses (PDDs), profiles, and output factors (OF), 2) adapting the Siebers-Keall MLC model to match the new HD120-MLC geometry and material composition, 3) determining the absolute dose conversion factor for the MC calculation, and 4) validating this entire linac/MLC in the context of dose calculation verification for clinical VMAT plans. MC PDDs for the 6X beams agree with the measured data to within 2.0% for field sizes ranging from 2 × 2 to 40 × 40 cm2. Measured and MC profiles show agreement in the 50% field width and the 80%-20% penumbra region to within 1.3 mm for all square field sizes. MC OFs for the 2 to 40 cm2 square fields agree with measurement to within 1.6%. Verification of VMAT SABR lung, liver, and vertebra plans demonstrate that measured and MC ion chamber doses agree within 0.6% for the 6X beam and within 2.0% for the 6X FFF beam. A 3D gamma factor analysis demonstrates that for the 6X beam, > 99% of voxels meet the pass criteria (3%/3 mm). For the 6X FFF beam, > 94% of voxels meet this criteria. The TrueBeam accelerator delivering 6X and 6X FFF beams with the HD120 MLC can be modeled in Monte Carlo to provide an independent 3D dose calculation for clinical VMAT plans. This quality assurance tool has been used clinically to verify over 140 6X and 16 6X FFF TrueBeam treatment plans.


Assuntos
Modelos Estatísticos , Método de Monte Carlo , Aceleradores de Partículas/instrumentação , Radiocirurgia/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Software , Canadá , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Aceleradores de Partículas/normas , Radiocirurgia/normas , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Validação de Programas de Computador
9.
Med Phys ; 37(1): 116-23, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20175472

RESUMO

PURPOSE: A Monte Carlo (MC) based QA process to validate the dynamic beam delivery accuracy for Varian RapidArc (Varian Medical Systems, Palo Alto, CA) using Linac delivery log files (DynaLog) is presented. Using DynaLog file analysis and MC simulations, the goal of this article is to (a) confirm that adequate sampling is used in the RapidArc optimization algorithm (177 static gantry angles) and (b) to assess the physical machine performance [gantry angle and monitor unit (MU) delivery accuracy]. METHODS: Ten clinically acceptable RapidArc treatment plans were generated for various tumor sites and delivered to a water-equivalent cylindrical phantom on the treatment unit. Three Monte Carlo simulations were performed to calculate dose to the CT phantom image set: (a) One using a series of static gantry angles defined by 177 control points with treatment planning system (TPS) MLC control files (planning files), (b) one using continuous gantry rotation with TPS generated MLC control files, and (c) one using continuous gantry rotation with actual Linac delivery log files. Monte Carlo simulated dose distributions are compared to both ionization chamber point measurements and with RapidArc TPS calculated doses. The 3D dose distributions were compared using a 3D gamma-factor analysis, employing a 3%/3 mm distance-to-agreement criterion. RESULTS: The dose difference between MC simulations, TPS, and ionization chamber point measurements was less than 2.1%. For all plans, the MC calculated 3D dose distributions agreed well with the TPS calculated doses (gamma-factor values were less than 1 for more than 95% of the points considered). Machine performance QA was supplemented with an extensive DynaLog file analysis. A DynaLog file analysis showed that leaf position errors were less than 1 mm for 94% of the time and there were no leaf errors greater than 2.5 mm. The mean standard deviation in MU and gantry angle were 0.052 MU and 0.355 degrees, respectively, for the ten cases analyzed. CONCLUSIONS: The accuracy and flexibility of the Monte Carlo based RapidArc QA system were demonstrated. Good machine performance and accurate dose distribution delivery of RapidArc plans were observed. The sampling used in the TPS optimization algorithm was found to be adequate.


Assuntos
Bases de Dados Factuais , Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Software , Humanos , Armazenamento e Recuperação da Informação/métodos , Método de Monte Carlo , Aceleradores de Partículas , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Validação de Programas de Computador
10.
Med Phys ; 33(10): 3666-79, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17089832

RESUMO

This work introduces an EGSnrc-based Monte Carlo (MC) beamlet does distribution matrix into a direct aperture optimization (DAO) algorithm for IMRT inverse planning. The technique is referred to as Monte Carlo-direct aperture optimization (MC-DAO). The goal is to assess if the combination of accurate Monte Carlo tissue inhomogeneity modeling and DAO inverse planning will improve the dose accuracy and treatment efficiency for treatment planning. Several authors have shown that the presence of small fields and/or inhomogeneous materials in IMRT treatment fields can cause dose calculation errors for algorithms that are unable to accurately model electronic disequilibrium. This issue may also affect the IMRT optimization process because the dose calculation algorithm may not properly model difficult geometries such as targets close to low-density regions (lung, air etc.). A clinical linear accelerator head is simulated using BEAMnrc (NRC, Canada). A novel in-house algorithm subdivides the resulting phase space into 2.5 X 5.0 mm2 beamlets. Each beamlet is projected onto a patient-specific phantom. The beamlet dose contribution to each voxel in a structure-of-interest is calculated using DOSXYZnrc. The multileaf collimator (MLC) leaf positions are linked to the location of the beamlet does distributions. The MLC shapes are optimized using direct aperture optimization (DAO). A final Monte Carlo calculation with MLC modeling is used to compute the final dose distribution. Monte Carlo simulation can generate accurate beamlet dose distributions for traditionally difficult-to-calculate geometries, particularly for small fields crossing regions of tissue inhomogeneity. The introduction of DAO results in an additional improvement by increasing the treatment delivery efficiency. For the examples presented in this paper the reduction in the total number of monitor units to deliver is approximately 33% compared to fluence-based optimization methods.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Simulação por Computador , Cabeça/diagnóstico por imagem , Cabeça/patologia , Humanos , Modelos Teóricos , Método de Monte Carlo , Neoplasias Nasofaríngeas/diagnóstico por imagem , Neoplasias Nasofaríngeas/patologia , Aceleradores de Partículas , Imagens de Fantasmas , Linguagens de Programação , Radiografia , Dosagem Radioterapêutica
11.
Med Phys ; 31(12): 3279-87, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15651610

RESUMO

Intensity modulated radiation therapy (IMRT) is used to deliver highly conformal radiation doses to tumors while sparing nearby sensitive tissues. Discrepancies between calculated and measured dose distributions have been reported for regions of high dose gradients corresponding to complex radiation fluence patterns. For the single pencil beam convolution dose calculation algorithm, the ability to resolve areas of high dose structure is partly related to the shape of the pencil beam dose kernel (similar to how a photon detector's point spread function relates to imaging resolution). Improvements in dose calculation accuracy have been reported when the treatment planning system (TPS) is recommissioned using high-resolution measurement data as input. This study proposes to improve the dose calculation accuracy for IMRT planning by modifying clinical dose kernel shapes already present in the TPS, thus avoiding the need to reacquire higher resolution commissioning data. The in-house optimization program minimizes a cost-function based on a two-dimensional composite dose subtraction/distance-to-agreement (gamma) analysis. The final modified kernel shapes are reintroduced into the treatment planning system and improvements to the dose calcula tion accuracy for complex IMRT dose distributions evaluated. The central kernel value (radius =0 cm) has the largest effect on the dose calculation resolution and is the focus of this study.


Assuntos
Algoritmos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Software , Design de Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...