Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biochem J ; 476(8): 1285-1302, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30944155

RESUMO

αδ-Bungarotoxins, a novel group of long-chain α-neurotoxins, manifest different affinity to two agonist/competitive antagonist binding sites of muscle-type nicotinic acetylcholine receptors (nAChRs), being more active at the interface of α-δ subunits. Three isoforms (αδ-BgTx-1-3) were identified in Malayan Krait (Bungarus candidus) from Thailand by genomic DNA analysis; two of them (αδ-BgTx-1 and 2) were isolated from its venom. The toxins comprise 73 amino acid residues and 5 disulfide bridges, being homologous to α-bungarotoxin (α-BgTx), a classical blocker of muscle-type and neuronal α7, α8, and α9α10 nAChRs. The toxicity of αδ-BgTx-1 (LD50 = 0.17-0.28 µg/g mouse, i.p. injection) is essentially as high as that of α-BgTx. In the chick biventer cervicis nerve-muscle preparation, αδ-BgTx-1 completely abolished acetylcholine response, but in contrast with the block by α-BgTx, acetylcholine response was fully reversible by washing. αδ-BgTxs, similar to α-BgTx, bind with high affinity to α7 and muscle-type nAChRs. However, the major difference of αδ-BgTxs from α-BgTx and other naturally occurring α-neurotoxins is that αδ-BgTxs discriminate the two binding sites in the Torpedo californica and mouse muscle nAChRs showing up to two orders of magnitude higher affinity for the α-δ site as compared with α-ε or α-γ binding site interfaces. Molecular modeling and analysis of the literature provided possible explanations for these differences in binding mode; one of the probable reasons being the lower content of positively charged residues in αδ-BgTxs. Thus, αδ-BgTxs are new tools for studies on nAChRs.


Assuntos
Bungarotoxinas/química , Bungarus , Proteínas de Peixes/química , Proteínas Musculares/química , Receptores Nicotínicos/química , Animais , Sítios de Ligação , Bungarotoxinas/metabolismo , Feminino , Proteínas de Peixes/metabolismo , Masculino , Camundongos , Proteínas Musculares/metabolismo , Receptores Nicotínicos/metabolismo , Torpedo
2.
J Biol Chem ; 291(35): 18410-8, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27365393

RESUMO

Leukotriene C4 synthase (LTC4S) catalyzes the formation of the proinflammatory lipid mediator leukotriene C4 (LTC4). LTC4 is the parent molecule of the cysteinyl leukotrienes, which are recognized for their pathogenic role in asthma and allergic diseases. Cellular LTC4S activity is suppressed by PKC-mediated phosphorylation, and recently a downstream p70S6k was shown to play an important role in this process. Here, we identified Ser(36) as the major p70S6k phosphorylation site, along with a low frequency site at Thr(40), using an in vitro phosphorylation assay combined with mass spectrometry. The functional consequences of p70S6k phosphorylation were tested with the phosphomimetic mutant S36E, which displayed only about 20% (20 µmol/min/mg) of the activity of WT enzyme (95 µmol/min/mg), whereas the enzyme activity of T40E was not significantly affected. The enzyme activity of S36E increased linearly with increasing LTA4 concentrations during the steady-state kinetics analysis, indicating poor lipid substrate binding. The Ser(36) is located in a loop region close to the entrance of the proposed substrate binding pocket. Comparative molecular dynamics indicated that Ser(36) upon phosphorylation will pull the first luminal loop of LTC4S toward the neighboring subunit of the functional homotrimer, thereby forming hydrogen bonds with Arg(104) in the adjacent subunit. Because Arg(104) is a key catalytic residue responsible for stabilization of the glutathione thiolate anion, this phosphorylation-induced interaction leads to a reduction of the catalytic activity. In addition, the positional shift of the loop and its interaction with the neighboring subunit affect active site access. Thus, our mutational and kinetic data, together with molecular simulations, suggest that phosphorylation of Ser(36) inhibits the catalytic function of LTC4S by interference with the catalytic machinery.


Assuntos
Glutationa Transferase/química , Substituição de Aminoácidos , Animais , Sítios de Ligação , Catálise , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Leucotrieno A4/biossíntese , Leucotrieno A4/química , Leucotrieno A4/genética , Camundongos , Mutação de Sentido Incorreto , Fosforilação , Estrutura Secundária de Proteína , Proteínas Quinases S6 Ribossômicas 70-kDa/química , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina/química , Serina/genética , Serina/metabolismo
3.
EMBO J ; 35(18): 1963-78, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27354364

RESUMO

Pre-B-cell leukemia homeobox (PBX) transcription factors are known to regulate organogenesis, but their molecular targets and function in midbrain dopaminergic neurons (mDAn) as well as their role in neurodegenerative diseases are unknown. Here, we show that PBX1 controls a novel transcriptional network required for mDAn specification and survival, which is sufficient to generate mDAn from human stem cells. Mechanistically, PBX1 plays a dual role in transcription by directly repressing or activating genes, such as Onecut2 to inhibit lateral fates during embryogenesis, Pitx3 to promote mDAn development, and Nfe2l1 to protect from oxidative stress. Notably, PBX1 and NFE2L1 levels are severely reduced in dopaminergic neurons of the substantia nigra of Parkinson's disease (PD) patients and decreased NFE2L1 levels increases damage by oxidative stress in human midbrain cells. Thus, our results reveal novel roles for PBX1 and its transcriptional network in mDAn development and PD, opening the door for new therapeutic interventions.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Neurônios Dopaminérgicos/fisiologia , Redes Reguladoras de Genes , Doença de Parkinson/patologia , Proteínas Proto-Oncogênicas/metabolismo , Substância Negra/patologia , Humanos , Fator de Transcrição 1 de Leucemia de Células Pré-B
4.
Biochem Biophys Res Commun ; 446(2): 519-22, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24613831

RESUMO

An 84-residue bactericidal peptide, PSK, was purified from a Chrysomya megacephala fly larvae preparation. Its amino acid sequence is similar to that of a previously reported larval peptide of the Drosophila genus (SK84) noticed for its anticancer and antimicrobial properties. The PSK sequence is also homologous to mitochondrial ATPase inhibitors from insects to humans (35-65% sequence identity), indicating an intracellular protein target and possible mechanism for PSK. It contains a cluster of six glycine residues, and has several two- and three-residue repeats. It is active against both Gram-positive and Gram-negative bacteria via a mechanism apparently involving cell membrane disintegration and inhibition of ATP hydrolysis. In addition, PSK induces an inward cationic current in pancreatic ß cells. Together, the findings identify a bioactive peptide of the ATPase inhibitor family with specific effects on both prokaryotic and mammalian cells.


Assuntos
Antibacterianos/farmacologia , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Dípteros/metabolismo , Células Secretoras de Insulina/fisiologia , Ativação do Canal Iônico/fisiologia , Proteínas/farmacologia , Sequência de Aminoácidos , Animais , Antibacterianos/química , Linhagem Celular , Humanos , Hidrólise , Células Secretoras de Insulina/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Larva/metabolismo , Dados de Sequência Molecular , Proteínas/química , Inibidores da Bomba de Prótons/química , Inibidores da Bomba de Prótons/farmacologia , Relação Estrutura-Atividade , Proteína Inibidora de ATPase
5.
Chem Biol Interact ; 202(1-3): 91-6, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23200944

RESUMO

Different lines of alcohol dehydrogenases (ADHs) have separate superfamily origins, already recognized but now extended and re-evaluated by re-screening of the latest databank update. The short-chain form (SDR) is still the superfamily with most abundant occurrence, most multiple divergence, most prokaryotic emphasis, and most non-complicated architecture. This pattern is compatible with an early appearance at the time of the emergence of prokaryotic cellular life. The medium-chain form (MDR) is also old but second in terms of all the parameters above, and therefore compatible with a second emergence. However, this step appears seemingly earlier than previously considered, and may indicate sub-stages of early emergences at the increased resolution available from the now greater number of data entries. The Zn-MDR origin constitutes a third stage, possibly compatible with the transition to oxidative conditions on earth. Within all these three lines, repeated enzymogeneses gave the present divergence. MDR-ADH origin(s), at a fourth stage, may also be further resolved in multiple or extended modes, but the classical liver MDR-ADH of the liver type can still be traced to a gene duplication ~550 MYA (million years ago), at the early vertebrate radiation, compatible with the post-eon-shift, "Cambrian explosion". Classes and isozymes correspond to subsequent and recent duplicatory events, respectively. They illustrate a peculiar pattern with functional and emerging evolutionary distinctions between parent and emerging lines, suggesting a parallelism between duplicatory and mutational events, now also visible at separate sub-stages. Combined, all forms show distinctive patterns at different levels and illustrate correlations with global events. They further show that simple molecular observations on patterns, multiplicities and occurrence give much information, suggesting common divergence rules not much disturbed by horizontal gene transfers after the initial origins.


Assuntos
Álcool Desidrogenase/genética , Evolução Molecular , Animais , Transferência Genética Horizontal , Humanos , Isoenzimas/genética , Fígado/enzimologia , Fígado/metabolismo , Oxirredução , Células Procarióticas/enzimologia , Células Procarióticas/metabolismo
6.
Proc Natl Acad Sci U S A ; 109(7): 2325-9, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308375

RESUMO

BRICHOS domains are encoded in > 30 human genes, which are associated with cancer, neurodegeneration, and interstitial lung disease (ILD). The BRICHOS domain from lung surfactant protein C proprotein (proSP-C) is required for membrane insertion of SP-C and has anti-amyloid activity in vitro. Here, we report the 2.1 Å crystal structure of the human proSP-C BRICHOS domain, which, together with molecular dynamics simulations and hydrogen-deuterium exchange mass spectrometry, reveals how BRICHOS domains may mediate chaperone activity. Observation of amyloid deposits composed of mature SP-C in lung tissue samples from ILD patients with mutations in the BRICHOS domain or in its peptide-binding linker region supports the in vivo relevance of the proposed mechanism. The results indicate that ILD mutations interfering with proSP-C BRICHOS activity cause amyloid disease secondary to intramolecular chaperone malfunction.


Assuntos
Amiloide/antagonistas & inibidores , Pulmão/metabolismo , Chaperonas Moleculares/metabolismo , Proteína C Associada a Surfactante Pulmonar/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Chaperonas Moleculares/química , Dados de Sequência Molecular , Conformação Proteica , Proteína C Associada a Surfactante Pulmonar/química
7.
Int J Biochem Cell Biol ; 44(3): 556-62, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22230366

RESUMO

HIV-1 enters cells via interaction of the viral glycoprotein gp120, the host cell surface receptor CD4 and the co-receptors CCR5 or CXCR4. For entry, gp120 undergoes conformational changes that depend on the reduction of one or more disulfides. Previous studies indicate that protein disulfide isomerase (PDI), thioredoxin-1 (Trx1), and glutaredoxin-1 (Grx1) catalyze gp120 reduction, but their specific disulfide targets are not known. Here, it was demonstrated that PDI and Trx1 have similar gp120 disulfide targets as determined by labeling after reduction, but with some pattern differences, including overall stronger labeling with Trx1 than with PDI. Furthermore, uneven labeling of the residues of a disulfide may reflect altered accessibility by conformational changes upon the reduction process. Since both PDI and Trx1 may be involved in viral entry, compounds that target the host redox system or the viral gp120 were tested in vitro to investigate whether redox regulation is a target for anti-HIV therapy. Carbohydrate binding agents (CBAs), previously shown to bind gp120 and inhibit HIV entry, were now demonstrated to inhibit gp120 disulfide reduction. Auranofin, an inhibitor of thioredoxin reductase 1 (TrxR1), also showed inhibitory activity towards HIV infection, although close to its cytotoxic concentration. Our results demonstrate that both the host redox system and the viral surface glycoproteins are of interest for the development of new generations of anti-HIV therapeutics.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/metabolismo , HIV-1/fisiologia , Isomerases de Dissulfetos de Proteínas/metabolismo , Tiorredoxinas/metabolismo , Regulação Alostérica , Animais , Antivirais/farmacologia , Auranofina/farmacologia , Bovinos , Dissulfetos/química , Dissulfetos/metabolismo , Proteína gp120 do Envelope de HIV/química , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , HIV-1/patogenicidade , Humanos , Espectrometria de Massas , Oxirredução/efeitos dos fármacos , Conformação Proteica , Ratos , Internalização do Vírus , Replicação Viral
8.
FEBS J ; 278(20): 3815-21, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21668648

RESUMO

The study of protein structure and function has evolved to become a leading discipline in the biophysical sciences. Although it is not yet possible to determine 3D protein structures from MS data alone, multiple MS-based techniques can be combined to obtain structural and functional data that are complementary to classical protein structure information obtained from NMR or X-ray crystallography. Monitoring gas-phase interactions of noncovalent complexes yields information on binding constants, complex stability, and the nature of interactions. Ion mobility MS and chemical crosslinking strategies can be applied to probe the architecture of macromolecular assemblies and protein-ligand complexes. MS analysis of hydrogen-deuterium exchange can be used to determine the localization of secondary structure elements, binding sites and conformational dynamics of proteins in solution. This minireview focuses first on new strategies that combine these techniques to gain insights into protein structure and function. Using one such strategy, we then demonstrate how a novel hydrogen-deuterium exchange microfluidics tool can be used online with an ESI mass spectrometer to monitor regional accessibility in a peptide, as exemplified with amyloid-ß peptide 1-40.


Assuntos
Medição da Troca de Deutério , Espectrometria de Massas , Microfluídica , Proteínas/química , Proteínas/metabolismo , Animais , Deutério/química , Humanos , Hidrogênio/química , Modelos Moleculares , Relação Estrutura-Atividade
9.
Mol Cell Proteomics ; 10(9): M110.006510, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21610101

RESUMO

A membrane cell for hydrogen and deuterium exchange on-line with mass spectrometry has been developed to monitor protein-protein interactions and protein conformations. It consists of two channels separated by a semipermeable membrane, where one channel carries the protein sample and the other deuterium oxide. The membrane allows transfer of deuterium oxide into the sample flow. The labeling time is controlled via the flow rate in the sample channel. This cell was validated against three models commonly used in hydrogen-deuterium exchange mass spectrometry: monitoring of folded and unfolded states in a protein, mapping the protein secondary structure at the peptide level, and detection of protein and antibody interactions. The system avoids the conventionally used sample dilution and handling, allowing for potential automation.


Assuntos
Medição da Troca de Deutério/métodos , Deutério/metabolismo , Hidrogênio/metabolismo , Espectrometria de Massas/métodos , Peptídeos , Proteínas , Proteômica/métodos , Anticorpos/metabolismo , Automação Laboratorial , Óxido de Deutério/metabolismo , Cinética , Peptídeos/análise , Peptídeos/química , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Desdobramento de Proteína , Proteínas/análise , Proteínas/química
10.
J Mol Biol ; 404(2): 328-36, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20887730

RESUMO

Spider dragline silk, one of the strongest polymers in nature, is composed of proteins termed major ampullate spidroin (MaSp) 1 and MaSp2. The N-terminal (NT) domain of MaSp1 produced by the nursery web spider Euprosthenops australis acts as a pH-sensitive relay, mediating spidroin assembly at around pH 6.3. Using amide hydrogen/deuterium exchange combined with mass spectrometry (MS), we detected pH-dependent changes in deuterium incorporation into the core of the NT domain, indicating global structural stabilization at low pH. The stabilizing effects were diminished or abolished at high ionic strength, or when the surface-exposed residues Asp40 and Glu84 had been exchanged with the corresponding amides. Nondenaturing electrospray ionization MS revealed the presence of dimers in the gas phase at pH values below--but not above--6.4, indicating a tight electrostatic association that is dependent on Asp40 and Glu84 at low pH. Results from analytical ultracentrifugation support these findings. Together, the data suggest a mechanism whereby lowering the pH to <6.4 results in structural changes and alteration of charge-mediated interactions between subunits, thereby locking the spidroin NT dimer into a tight entity important for aggregation and silk formation.


Assuntos
Fibroínas/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Deutério , Dimerização , Fibroínas/genética , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Concentração Osmolar , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrometria de Massas por Ionização por Electrospray , Aranhas/química , Aranhas/genética , Eletricidade Estática , Ultracentrifugação
11.
Biochem Biophys Res Commun ; 396(1): 125-30, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20494124

RESUMO

Two large gene and protein superfamilies, SDR and MDR (short- and medium-chain dehydrogenases/reductases), were originally defined from analysis of alcohol and polyol dehydrogenases. The superfamilies contain minimally 82 and 25 genes, respectively, in humans, minimally 324 and 86 enzyme families when known lines in other organisms are also included, and over 47,000 and 15,000 variants in existing sequence data bank entries. SDR enzymes have one-domain subunits without metal and MDR two-domain subunits without or with zinc, and these three lines appear to have emerged in that order from the universal cellular ancestor. This is compatible with their molecular architectures, present multiplicity, and overall distribution in the kingdoms of life, with SDR also of viral occurrence. An MDR-zinc, when present, is often, but not always, catalytic. It appears also to have a structural role in inter-domain interactions, coenzyme binding and substrate pocket formation, as supported by domain variability ratios and ligand positions. Differences among structural and catalytic zinc ions may be relative and involve several states. Combined, the comparisons trace evolutionary properties of huge superfamilies, with partially redundant enzymes in cellular redox functions.


Assuntos
Acil-CoA Desidrogenase/classificação , Butiril-CoA Desidrogenase/classificação , Evolução Molecular , Metaloproteínas/classificação , Zinco/metabolismo , Acil-CoA Desidrogenase/química , Acil-CoA Desidrogenase/genética , Butiril-CoA Desidrogenase/química , Butiril-CoA Desidrogenase/genética , Humanos , Metaloproteínas/química , Metaloproteínas/genética , Filogenia , Conformação Proteica
12.
J Biol Chem ; 285(10): 7246-53, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20018874

RESUMO

Wnts are secreted, lipidated proteins that regulate multiple aspects of brain development, including dopaminergic neuron development. In this study, we perform the first purification and signaling analysis of Wnt2 and define the function of Wnt2 in ventral midbrain precursor cultures, as well as in Wnt2-null mice in vivo. We found that purified Wnt2 induces the phosphorylation of both Lrp5/6 and Dvl-2/3, and activates beta-catenin in SN4741 dopaminergic cells. Moreover, purified Wnt2 increases progenitor proliferation, and the number of dopaminergic neurons in ventral midbrain precursor cultures. In agreement with these findings, analysis of the ventral midbrain of developing Wnt2-null mice revealed a decrease in progenitor proliferation and neurogenesis that lead to a decrease in the number of postmitotic precursors and dopaminergic neurons. Collectively, our observations identify Wnt2 as a novel regulator of dopaminergic progenitors and dopaminergic neuron development.


Assuntos
Proliferação de Células , Mesencéfalo , Células-Tronco/fisiologia , Proteína Wnt2/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Dopamina/metabolismo , Feminino , Mesencéfalo/citologia , Mesencéfalo/embriologia , Camundongos , Camundongos Knockout , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Gravidez , Processamento de Proteína Pós-Traducional , Células-Tronco/citologia , Proteína Wnt2/genética , Proteína Wnt2/isolamento & purificação , beta Catenina/metabolismo
13.
Rapid Commun Mass Spectrom ; 23(22): 3591-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19844966

RESUMO

The C-terminal domain of lung surfactant protein C (CTC) precursor (proSP-C) is involved in folding of the transmembrane segment of proSP-C. CTC includes a Brichos domain with homologs in cancer- and dementia-associated proteins. Mutations in the Brichos domain cause misfolding of proSP-C and hence amyloid fibril formation in interstitial lung disease. Electrospray ionization mass spectrometry (ESI-MS) with collision-induced dissociation (CID) experiments was applied to study non-covalent interactions between human recombinant CTC or its Brichos domain, and SP-C analogs, homotripeptides and peptides designed to model amyloid fibril formation. The results show that the Brichos domain contains the peptide-binding function of CTC. In titration experiments, apparent dissociation constants (KD) were in the micromolar range where triple-valine showed the lowest KD and triple-tyrosine the highest. Non-hydrophobic peptides failed to form complexes with Brichos. CID revealed that complexes with aromatic peptide ligands are more stable in the gas phase than complexes with non-aromatic ligands. The Brichos domain was also shown to bind fibril-forming peptides containing aromatic/hydrophobic residues.


Assuntos
Peptídeos/química , Proteína C Associada a Surfactante Pulmonar/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Cinética , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteína C Associada a Surfactante Pulmonar/genética , Proteína C Associada a Surfactante Pulmonar/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie
14.
J Gen Virol ; 90(Pt 11): 2821-2828, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19605588

RESUMO

Prions are infectious agents resulting from the conversion of a normal cellular protein, PrP(C), to a misfolded species, PrP(Sc). Iatrogenic transmission of prions is known from surgical procedures involving stainless steel materials. Here, it was shown that stainless steel containing nickel and molybdenum binds PrP(Sc) more efficiently and transmits infection to cells in culture to a higher degree than if these elements are not present. Furthermore, both nickel and molybdenum alone adsorbed PrP(Sc), and nickel powder could be used to extract PrP(Sc) from dilute solutions, thus providing a simple approach to concentration of PrP(Sc). The fact that nickel and molybdenum in steel alloys increased the binding affinity, and bound infectivity, of PrP(Sc) is an important issue to consider in the manufacture of surgical instruments and abattoir tools.


Assuntos
Cirurgia Geral/instrumentação , Molibdênio/metabolismo , Níquel/metabolismo , Doenças Priônicas/transmissão , Príons/metabolismo , Aço Inoxidável , Adsorção , Animais , Humanos , Ligação Proteica
15.
Phys Chem Chem Phys ; 11(6): 975-83, 2009 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-19177216

RESUMO

The binding of zinc (Zn) ions to proteins is important for many cellular events. The theoretical and computational description of this binding (as well as that of other transition metals) is a challenging task. In this paper the binding of the Zn ion to four cysteine residues in the structural site of horse liver alcohol dehydrogenase (HLADH) is studied using a synthetic peptide mimic of this site. The study includes experimental measurements of binding constants, classical free energy calculations from molecular dynamics (MD) simulations and quantum mechanical (QM) electron structure calculations. The classical MD results account for interactions at the molecular level and reproduce the absolute binding energy and the hydration free energy of the Zn ion with an accuracy of about 10%. This is insufficient to obtain correct free energy differences. QM correction terms were calculated from density functional theory (DFT) on small clusters of atoms to include electronic polarisation of the closest waters and covalent contributions to the Zn-S coordination bond. This results in reasonably good agreement with the experimentally measured binding constants and Zn ion hydration free energies in agreement with published experimental values. The study also includes the replacement of one cysteine residue to an alanine. Simulations as well as experiments showed only a small effect of this upon the binding free energy. A detailed analysis indicate that the sulfur is replaced by three water molecules, thereby changing the coordination number of Zn from four (as in the original peptide) to six (as in water).


Assuntos
Álcool Desidrogenase/química , Álcool Desidrogenase/metabolismo , Materiais Biomiméticos/metabolismo , Cisteína/metabolismo , Modelos Moleculares , Peptídeos/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Cavalos , Fígado/enzimologia , Conformação Molecular , Peptídeos/síntese química , Peptídeos/química , Teoria Quântica , Termodinâmica
16.
Biochem Biophys Res Commun ; 373(4): 482-7, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18571501

RESUMO

The reversible thermal unfolding of the archaeal histone-like protein Ssh10b from the extremophile Sulfolobus shibatae was studied using differential scanning calorimetry and circular dichroism spectroscopy. Analytical ultracentrifugation and gel filtration showed that Ssh10b is a stable dimer in the pH range 2.5-7.0. Thermal denaturation data fit into a two-state unfolding model, suggesting that the Ssh10 dimer unfolds as a single cooperative unit with a maximal melting temperature of 99.9 degrees C and an enthalpy change of 134 kcal/mol at pH 7.0. The heat capacity change upon unfolding determined from linear fits of the temperature dependence of DeltaH(cal) is 2.55 kcal/(mol K). The low specific heat capacity change of 13 cal/(mol K residue) leads to a considerable flattening of the protein stability curve (DeltaG (T)) and results in a maximal DeltaG of only 9.5 kcal/mol at 320 K and a DeltaG of only 6.0 kcal/mol at the optimal growth temperature of Sulfolobus.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Temperatura Alta , Proteínas de Ligação a RNA/metabolismo , Sulfolobus/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Proteínas de Ligação a DNA/química , Histonas/química , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Desnaturação Proteica , Dobramento de Proteína , Proteínas de Ligação a RNA/química , Termodinâmica
17.
Anal Biochem ; 374(1): 154-62, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17961490

RESUMO

Identification of peptides from a complex mixture can be difficult because of the wide concentration range and the different ionization efficiencies of peptides during analysis by electrospray ionization (ESI) mass spectrometry (MS). Preconcentration methods are necessary to allow low-abundance and low-intensity peptides to reach the ionization threshold of the mass spectrometer. Here we demonstrate peptide enrichment based on electroimmobilization. Peptides are immobilized without the use of solid support or chemical binding by application of an electric field along a microflow stream in an electrocapture cell. Once enriched/preconcentrated inside the cell, they are released by removal of the electric field and via an interface with an electrospray emitter are submitted to online mass spectrometric analysis. Tandem mass spectrometric analysis of a peptide mixture containing hemoglobin, myoglobin, bovine serum albumin (BSA), and cytochrome c was successful. Amplification factors up to 16-fold were achieved with improvement of the signal-to-noise values for the preconcentrated sample. The limit of detection for one of the preconcentrated peptides was 3.6 fmol.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Peptídeos/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray/métodos
18.
Biochimie ; 89(8): 950-60, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17475390

RESUMO

Sphingolipids are degraded by sphingomyelinase and ceramidase in the gut to ceramide and sphingosine, which may inhibit cell proliferation and induce apoptosis, and thus have anti-tumour effects in the gut. Although previous rodent studies including experiments on knockout mice indicate a role of neutral ceramidase in ceramide digestion, the human enzyme has never been purified and characterized in its purified form. We here report the purification and characterization of neutral ceramidase from human ileostomy content, using octanoyl-[(14)C]sphingosine as substrate. After four chromatographic steps, a homogeneous protein band with 116kDa was obtained. MALDI mass spectrometry identified 16 peptide masses similar to human ceramidase previously cloned by El Bawab et al. [Molecular cloning and characterization of a human mitochondrial ceramidase, J. Biol. Chem. 275 (2000) 21508-21513] and Hwang et al. [Subcellular localization of human neutral ceramidase expressed in HEK293 cells, Biochem. Biophys. Res. Commun. 331 (2005) 37-42]. By RT-PCR and 5'-RACE methods, a predicted partial nucleotide sequence of neutral ceramidase was obtained from a human duodenum biopsy sample, which was homologous to that of known neutral/alkaline ceramidases. The enzyme has neutral pH optimum and catalyses both hydrolysis and formation of ceramide without distinct bile salt dependence. It is inhibited by Cu(2+) and Zn(2+) ions and by low concentrations of cholesterol. The enzyme is a glycoprotein but deglycosylation does not affect its activity. Our study indicates that neutral ceramidase is expressed in human intestine, released in the intestinal lumen and plays a major role in ceramide metabolism in the human gut.


Assuntos
Amidoidrolases/química , Intestinos/enzimologia , Amidoidrolases/genética , Amidoidrolases/isolamento & purificação , Sequência de Aminoácidos , Sequência de Bases , Ceramidases , Ceramidas/metabolismo , Colesterol/metabolismo , Duodeno , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Dados de Sequência Molecular , Ceramidase Neutra , Células Tumorais Cultivadas
19.
Anal Chem ; 79(3): 1057-63, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17263335

RESUMO

Electrocapture is a multifunctional microfluidic tool that can be used for concentration, sample cleanup, multistep reactions, and separation of biomolecules. Herein, we investigate the mechanisms underlying the electrocapture principle. A microfluidic electrocapture device was found to be capable of generating regions of different electric field, which are maintained in the flow by electric and hydrodynamic forces, with the zones of lower electric field strength upstream of those with higher strength. In addition to detection of the local electric fields by direct measurements, the existence of the zones was observed by the capture of a solution containing Coomassie and myoglobin. The two molecules were captured at different spots in a steady-state manner and were released (separated) at different electric fields. Considering these observations and the experimental values for the electric field strengths, flow velocities, and electrophoretic mobilities of DNA, proteins, and peptides, it is concluded that the macromolecules are captured between the field zones by a stacking mechanism.


Assuntos
Biopolímeros/isolamento & purificação , Eletroforese em Microchip/métodos , Microfluídica/métodos , DNA/isolamento & purificação , Eletroforese em Microchip/instrumentação , Microfluídica/instrumentação , Peptídeos/isolamento & purificação , Proteínas/isolamento & purificação
20.
FEBS J ; 274(3): 751-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17288555

RESUMO

A 37 residue peptide, aglycin, has been purified from porcine intestine. The sequence is identical to that of residues 27-63 of plant albumin 1 B precursor (PA1B, chain b) from pea seeds. Aglycin resists in vitro proteolysis by pepsin, trypsin and Glu-C protease, compatible with its intestinal occurrence and an exogenous origin from plant food. When subcutaneously injected into mice (at 10 microg.g(-1) body weight), aglycin has a hyperglycemic effect resulting in a doubling of the blood glucose level within 60 min. Using surface plasmon resonance biosensor technology, an aglycin binding protein with an apparent molecular mass of 34 kDa was detected in membrane protein extracts from porcine and mice pancreas. The polypeptide was purified by affinity chromatography and identified through peptide mass fingerprinting as the voltage-dependent anion-selective channel protein 1. The results indicate that aglycin has the potential to interfere with mammalian physiology.


Assuntos
Glicemia/análise , Peptídeos/química , Proteínas de Plantas/química , Animais , Cromatografia de Afinidade , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Camundongos , Peso Molecular , Pâncreas/química , Pisum sativum/química , Mapeamento de Peptídeos , Peptídeos/metabolismo , Peptídeos/farmacologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ressonância de Plasmônio de Superfície/métodos , Suínos , Canal de Ânion 1 Dependente de Voltagem/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...