Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(18): 13923-13936, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38666766

RESUMO

Small, highly charged liquid droplets are unstable with respect to spontaneous charge separation when their size drops below the Rayleigh limit or, in other words, their fissility parameter X exceeds the value 1. The absence of small doubly charged atomic cluster ions in mass spectra below an element-specific appearance size na has sometimes been attributed to the onset of barrierless fission at X = 1. However, more realistic models suggest that na marks the size below which the rate of fission surpasses that of competing dissociative channels, and the Rayleigh limit of doubly charged van der Waals clusters has remained unchartered. Here we explore a novel approach to form small dicationic clusters, namely by Penning ionization of singly charged noble gas (Ng) clusters that are embedded in helium nanodroplets; the dications are then gently extracted from the nanodroplets by low-energy collisions with helium gas. We observe Ngn2+ ions that are about 40% smaller than previously reported for xenon and krypton and about 20% for argon. These findings suggest that fission barriers have been underestimated in previous theoretical work. Furthermore, we measure the size distributions of fragment ions that are produced by collisional excitation of mass-selected dications. At lowest collision gas pressure, dicationic Kr and Xe clusters that are smaller than previously observed are found to evaporate an atom before they undergo highly symmetric fission. The distribution of fragments resulting from fission of small dicationic Ar clusters is bimodal.

2.
Phys Chem Chem Phys ; 26(15): 11482-11490, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38533827

RESUMO

Many doubly charged heteronuclear dimers are metastable or even thermodynamically stable with respect to charge separation. Homonuclear dicationic dimers, however, are more difficult to form. He22+ was the first noble gas dimer predicted to be metastable and, decades later, observed. Ne22+ is the only other dicationic noble gas dimer that has been detected so far. Here, we present a novel approach to form fragile dicationic species, by post-ionization of singly charged ions that are embedded in helium nanodroplets (HNDs). Bare ions are then extracted by colliding the HNDs with helium gas. We detect homonuclear doubly charged dimers and trimers of krypton and xenon, but not argon. Our multi-reference ab initio calculations confirm the stability of Kr22+, Kr32+, Xe22+, Xe32+, and Ar22+, but put the stability of Ar32+ towards dissociation to Ar+ + Ar2+ into question.

3.
Adv Sci (Weinh) ; 11(12): e2307816, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225692

RESUMO

Research into and applications of phthalocyanines (Pc) are mostly connected to their intriguing electronic properties. Here, messenger-type UV-vis spectroscopy of two metal-free ions from the phthalocyanine family, cationic H2Pc+ and H2PcD+, along with their hydrates is performed. They show that the electronic properties of both ions can be traced to those in the conjugate base, Pc2-, however, they are affected by state splitting due to the reduced symmetry; in the H2Pc+ radical cation, a new band appears due to excitations into the singly-occupied molecular orbital. Quantum chemical spectra modeling reproduces all important features of the measured spectra and provides insight into the nature of electronic transitions. Hydration of the ions has only a mild effect on the electronic spectra, showing the stability of the electronic structure with respect to solvation effects.

4.
J Phys Chem Lett ; 14(36): 8199-8204, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37672355

RESUMO

The structure of the minimum unit of the radical cationic water clusters, the (H2O)2+ dimer, has attracted much attention because of its importance for the radiation chemistry of water. Previous spectroscopic studies indicated that the dimers have a proton-transferred structure (H3O+·OH), though the alternate metastable hemibonded structure (H2O·OH2)+ was also predicted based on theoretical calculations. Here, we produce (H2O)2+ dimers in superfluid helium nanodroplets and study their infrared spectra in the range of OH stretching vibrations. The observed spectra indicate the coexistence of the two structures in the droplets, supported by density functional theory calculations. This is the first spectroscopic identification of the hemibonded isomer of water radical cation dimers. The observation of the higher-energy isomer reveals efficient kinetic trapping for metastable ionic clusters due to the rapid cooling in helium droplets.

5.
Rev Sci Instrum ; 94(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695112

RESUMO

Here, we describe our pulsed helium droplet apparatus for spectroscopy of molecular ions. Our approach involves the doping of the droplets of about 10 nm in diameter with precursor molecules, such as ethylene, followed by electron impact ionization. Droplets containing ions are irradiated by the pulsed infrared laser beam. Vibrational excitation of the embedded cations leads to the evaporation of the helium atoms in the droplets and the release of the free ions, which are detected by the quadrupole mass spectrometer. In this work, we upgraded the experimental setup by introducing an octupole RF collision cell downstream from the electron impact ionizer. The implementation of the RF ion guide increases the transmission efficiency of the ions. Filling the collision cell with additional He gas leads to a decrease in the droplet size, enhancing sensitivity to the laser excitation. We show that the spectroscopic signal depends linearly on the laser pulse energy, and the number of ions generated per laser pulse is about 100 times greater than in our previous experiments. These improvements facilitate faster and more reproducible measurements of the spectra, yielding a handy laboratory technique for the spectroscopic study of diverse molecular ions and ionic clusters at low temperature (0.4 K) in He droplets.

6.
Rev Sci Instrum ; 94(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37191466

RESUMO

In this contribution, we present an efficient and alternative method to the commonly used RF-multipole trap technique to produce He-tagged molecular ions at cryogenic temperatures, which are perfectly suitable for messenger spectroscopy. The seeding of dopant ions in multiply charged helium nanodroplets, in combination with a gentle extraction of the latter from the helium matrix, enables the efficient production of He-tagged ion species. With a quadrupole mass filter, a specific ion of interest is selected, merged with a laser beam, and the photoproducts are measured in a time-of-flight mass-spectrometer. The detection of the photofragment signal from a basically zero background is much more sensitive than the depletion of the same amount of signal from precursor ions, delivering high quality spectra at reduced data acquisition times. Proof-of-principle measurements of bare and He-tagged Ar-cluster ions, as well as of He-tagged C60 ions, are presented.

7.
J Phys Chem Lett ; 14(13): 3126-3131, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36952614

RESUMO

In this Letter, we report the experimental detection of likely the largest ordered structure of helium atoms surrounding a monatomic impurity observed to date using a recently developed technique. The mass spectrometry investigation of HeNCa2+ clusters, formed in multiply charged helium nanodroplets, reveals magic numbers at N = 12, 32, 44, and 74. Classical optimization and path integral Monte Carlo calculations suggest the existence of up to four shells surrounding the calcium dication which are closed with well-ordered Mozartkugel-like structures: He12Ca2+ with an icosahedron, the second at He32Ca2+ with a dodecahedron, the third at He44Ca2+ with a larger icosahedron, and finally for He74Ca2+, we find that the outermost He atoms form an icosidodecahedron which contains the other inner shells. We analyze the reasons for the formation of such ordered shells in order to guide the selection of possible candidates to exhibit a similar behavior.

8.
J Chem Phys ; 157(22): 224306, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36546796

RESUMO

It is well established that an isolated benzene radical anion is not electronically stable. In the present study, we experimentally show that electron attachment to benzene clusters leads to weak albeit unequivocal occurrence of a C6H6 - moiety. We propose here-based on electronic structure calculation-that this moiety actually corresponds to linear structures formed by the opening of the benzene ring via electron attachment. The cluster environment is essential in this process since it quenches the internal energy released upon ring opening, which in the gas phase leads to further dissociation of this anion.

9.
Phys Chem Chem Phys ; 24(44): 27128-27135, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36342373

RESUMO

We investigate electron attachment to large ammonia clusters doped with a single benzene (Bz) molecule (NH3)N·Bz, N̄ ≈ 320. Negatively charged clusters are probed by mass spectrometry, and the energy-dependent ion yields are derived from mass spectra measured at different electron energies. The ion efficiency curves of pure ammonia clusters exhibit two maxima. At around 6 eV, (NH3)n-1NH2- ions are produced via dissociative electron attachment (DEA) to NH3 molecules. (NH3)n- ions produced at this energy are formed by DEA followed by fragment caging. At low energies around 1.3 eV, only (NH3)n- ions are formed for cluster sizes n ≥ 35 that correspond to solvated electrons in ammonia clusters. The doped (NH3)n·Bz- cluster ions exhibit essentially the same energy dependence. The (NH3)n·Bz- ions are metastable and evaporate NH3 molecule(s), while pure (NH3)n- ions are stable. The lifetime for NH3 molecule evaporation from the Bz-doped clusters was estimated as τ ≈ 18 µs. We interpret the metastability of the doped clusters by the charge localization on a Bz- ion solvated in the ammonia, which is accompanied by an energy release leading to the evaporation of NH3 molecule(s).

10.
Molecules ; 27(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956887

RESUMO

The adsorption of helium or hydrogen on cationic triphenylene (TPL, C18H12), a planar polycyclic aromatic hydrocarbon (PAH) molecule, and of helium on cationic 1,3,5-triphenylbenzene (TPB, C24H18), a propeller-shaped PAH, is studied by a combination of high-resolution mass spectrometry and classical and quantum computational methods. Mass spectra indicate that HenTPL+ complexes are particularly stable if n = 2 or 6, in good agreement with the quantum calculations that show that for these sizes, the helium atoms are strongly localized on either side of the central carbon ring for n = 2 and on either side of the three outer rings for n = 6. Theory suggests that He14TPL+ is also particularly stable, with the helium atoms strongly localized on either side of the central and outer rings plus the vacancies between the outer rings. For HenTPB+, the mass spectra hint at enhanced stability for n = 2, 4 and, possibly, 11. Here, the agreement with theory is less satisfactory, probably because TPB+ is a highly fluxional molecule. In the global energy minimum, the phenyl groups are rotated in the same direction, but when the zero-point harmonic correction is included, a structure with one phenyl group being rotated opposite to the other two becomes lower in energy. The energy barrier between the two isomers is very small, and TPB+ could be in a mixture of symmetric and antisymmetric states, or possibly even vibrationally delocalized.

11.
Phys Chem Chem Phys ; 24(19): 11662-11667, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35507430

RESUMO

It has been debated for years if the polycyclic aromatic hydrocarbon phenanthrene exists in its anionic form, or, in other words, if its electron affinity (EA) is positive or negative. In this contribution we confirm that the bare phenanthrene anion Ph- created in a binary collision with an electron at room temperature has a lifetime shorter than microseconds. However, the embedding of neutral phenanthrene molecules in negatively charged helium nanodroplets enables the formation of phenanthrene anions by charge transfer processes and the stabilization of the latter in the ultracold environment. Gentle shrinking of the helium matrix of phenanthrene-doped HNDs by collisions with helium gas makes the bare Ph- visible by high-resolution mass spectrometry. From these and previous measurements we conclude, that the EA of phenanthrene is positive and smaller than 24.55 meV.

12.
Phys Chem Chem Phys ; 24(8): 5138-5143, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35156966

RESUMO

Quite a few molecules do not form stable anions that survive the time needed for their detection; their electron affinities (EA) are either very small or negative. How does one measure the EA if the anion cannot be observed? Or, at least, can one establish lower and upper bounds to their EA? We propose two approaches that provide lower and upper bounds. We choose the phenanthrene (Ph) molecule whose EA is controversial. Through competition between helium evaporation and electron detachment in HenPh- clusters, formed in helium nanodroplets, we estimate the lower bound of the vertical detachment energy (VDE) of Ph- as about -3 meV. In the second step, Ph is complexed with calcium whose electron affinity is just 24.55 meV. When CaPh- ions are collided with a thermal gas of argon, one observes Ca- product ions but no Ph-, suggesting that the EA of Ph is below that of Ca.

13.
Phys Chem Chem Phys ; 24(4): 2004-2014, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35022639

RESUMO

Helium clusters around the recently experimentally observed sulphur hexafluoride SF6+ and sulphur pentafluoride SF5+ ions are investigated using a combined experimental and theoretical effort. Mass spectrometry ion yields are obtained and the energetics and structure of the corresponding HeN-SF6+ and HeN-SF5+ clusters are analyzed using path integral molecular dynamics calculations as a function of N, the number of He atoms, employing a new intermolecular potential describing the interaction between the dopant and the surrounding helium. The new force field is optimized on benchmark potential energy ab initio calculations and represented by improved Lennard-Jonnes analytical expressions. This procedure improves the previous potentials employed in similar simulations for neutral SF6 attached to helium nanodroplets. The theoretical analysis explains the characteristic features observed in the experimental ion yields which suggest the existence of stable configurations at specific sizes.

14.
J Phys Chem Lett ; 12(17): 4112-4117, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33886323

RESUMO

There are myriad ions that are deemed too short-lived to be experimentally accessible. One of them is SF6+. It has never been observed, although not for lack of trying. We demonstrate that long-lived SF6+ can be formed by doping charged helium nanodroplets (HNDs) with sulfur hexafluoride; excess helium is then gently stripped from the doped HNDs by collisions with helium gas. The ion is identified by high-resolution mass spectrometry (resolution m/Δm = 15000), the close agreement between the expected and observed yield of ions that contain minor sulfur isotopes, and collision-induced dissociation in which mass-selected HenSF6+ ions collide with helium gas. Under optimized conditions, the yield of SF6+ exceeds that of SF5+. The procedure is versatile and suitable for stabilizing many other transient molecular ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...