Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38891457

RESUMO

Additive manufacturing (AM) has revolutionised the manufacturing industry, offering versatile capabilities for creating complex geometries directly from a digital design. Among the various 3D printing methods for polymers, vat photopolymerisation combines photochemistry and 3D printing. Despite the fact that single-epoxy 3D printing has been explored, the fabrication of multi-material bioderived epoxy thermosets remains unexplored. This study introduces the feasibility and potential of multi-material 3D printing by means of a dual-vat Digital Light Processing (DLP) technology, focusing on bioderived epoxy resins such as ELO (epoxidized linseed oil) and DGEVA (vanillin alcohol diglycidyl ether). By integrating different materials with different mechanical properties into one sample, this approach enhances sustainability and offers versatility for different applications. Through experimental characterisation, including mechanical and thermal analysis, the study demonstrates the ability to produce structures composed of different materials with tailored mechanical properties and shapes that change on demand. The findings underscore the promising technology of dual-vat DLP technology applied to sustainable bioderived epoxy monomers, allowing sustainable material production and complex structure fabrication.

2.
Polymers (Basel) ; 15(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37896333

RESUMO

In this study, a bio-based acrylate resin derived from soybean oil was used in combination with a reactive diluent, isobornyl acrylate, to synthetize a composite scaffold reinforced with bioactive glass particles. The formulation contained acrylated epoxidized soybean oil (AESO), isobornyl acrylate (IBOA), a photo-initiator (Irgacure 819) and a bioactive glass particle. The resin showed high reactivity towards radical photopolymerisation, and the presence of the bioactive glass did not significantly affect the photocuring process. The 3D-printed samples showed different properties from the mould-polymerised samples. The glass transition temperature Tg showed an increase of 3D samples with increasing bioactive glass content, attributed to the layer-by-layer curing process that resulted in improved interaction between the bioactive glass and the polymer matrix. Scanning electron microscope analysis revealed an optimal distribution on bioactive glass within the samples. Compression tests indicated that the 3D-printed sample exhibited higher modulus compared to mould-synthetized samples, proving the enhanced mechanical behaviour of 3D-printed scaffolds. The cytocompatibility and biocompatibility of the samples were evaluated using human bone marrow mesenchymal stem cells (bMSCs). The metabolic activity and attachment of cells on the samples' surfaces were analysed, and the results demonstrated higher metabolic activity and increased cell attachment on the surfaces containing higher bioactive glass content. The viability of the cells was further confirmed through live/dead staining and reseeding experiments. Overall, this study presents a novel approach for fabricating bioactive glass reinforced scaffolds using 3D printing technology, offering potential applications in tissue engineering.

3.
Glob Chall ; 7(4): 2200234, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37020622

RESUMO

The paradigm shift from traditional petroleum-based non-recyclable thermosets to biobased repeatedly recyclable materials is required to move toward circular bioeconomy. Here, two mechanically and chemically recyclable extended vanillin-derived epoxy thermosets are successfully fabricated by introduction of Schiff-base/imine covalent dynamic bonds. Thermoset 1 (T1) is based on linear monomer 1 (M1) with two alcohol end groups and one imine bond, while thermoset 2 (T2) is based on branched monomer 2 (M2) with three alcohol end-groups and three imine-groups. Thermosets are obtained by reaction of monomer 1 (M1) and monomer 2 (M2) with trimethylolpropane triglycidyl ether. The structure of the monomers and thermosets is confirmed by nuclear magnetic resonance and Fourier transform infrared spectroscopic techniques. Both thermosets exhibit good thermal and mechanical properties and they are stable in common organic solvents. Furthermore, they can be thermally reprocessed through compression molding with good recovery of the mechanical properties. Last but not least, the fabricated thermosets can be rapidly and completely chemically recycled to water-soluble aldehydes and amines by imine hydrolysis at room temperature in 0.1 m HCl solution. This is promising for development of future materials with multiple circularity by different routes.

4.
Polymers (Basel) ; 15(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36850307

RESUMO

Vitrimers brought new properties in thermosets by allowing their reshaping, self-healing, reprocessing, and network rearrangement without changing structural integrity. In this study, epoxidized castor oil (ECO) was successfully used for the straightforward synthesis of a bio-based solvent-free vitrimer. The synthesis was based on a UV-curing process, which proceeded at low temperatures in the absence of any solvents, and within a short time. Real time Fourier-transformed infrared spectroscopy and photo-DSC were exploited to monitor the cationic photocurable process. The UV-cured polymer networks were able to efficiently undergo thermo-activated bond exchange reactions due to the presence of dibutyl phosphate as a transesterification catalyst. Mechanical properties, thermal resistance, glass transition temperature, and stress relaxation were investigated as a function of the amount of transesterification catalyst. Mechanical properties were determined by both DMTA and tensile tests. Glass transition temperature (Tg) was evaluated by DMTA. Thermal stability was assessed by thermogravimetric analysis, whilst vitrimeric properties were studied by stress relaxation experiments. Overall, the ECO-based vitrimer showed high thermal resistance (up to 200 °C) and good mechanical properties (elastic modulus of about 10 MPa) and can therefore be considered as a promising starting point for obtaining more sustainable vitrimers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...