Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 41(18): 4360-3, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27628397

RESUMO

Diamond slotted photonic crystal (PhC) cavities were fabricated and used for gas detection. They exhibit wavelength sensitivity reaching a 350 nm per unit change of the refractive index of the gaseous environment of the PhC. With a simple oxidized surface termination, diamond PhCs display an ultrahigh sensitivity to the surface adsorption of polar molecules. Gaseous concentrations as low as 80 parts per million (ppm) of hexanol vapor in nitrogen are probed, and a detection limit in the ppm range is inferred, demonstrating a high interest of such devices for trace sensing.

2.
Faraday Discuss ; 172: 47-59, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25259508

RESUMO

Boron doped nanocrystalline diamond is known as a remarkable material for the fabrication of sensors, taking advantage of its biocompatibility, electrochemical properties, and stability. Sensors can be fabricated to directly probe physiological species from biofluids (e.g. blood or urine), as will be presented. In collaboration with electrophysiologists and biologists, the technology was adapted to enable structured diamond devices such as microelectrode arrays (MEAs), i.e. common electrophysiology tools, to probe neuronal activity distributed over large populations of neurons or embryonic organs. Specific MEAs can also be used to build neural prostheses or implants to compensate function losses due to lesions or degeneration of parts of the central nervous system, such as retinal implants, which exhibit real promise as biocompatible neuroprostheses for in vivo neuronal stimulations. New electrode geometries enable high performance electrodes to surpass more conventional materials for such applications.


Assuntos
Biotecnologia/instrumentação , Boro/química , Diamante/química , Eletrofisiologia/instrumentação , Próteses Visuais , Biotecnologia/métodos , Técnicas Eletroquímicas , Eletrofisiologia/métodos , Microeletrodos , Neurônios/fisiologia , Retina/fisiologia
3.
Biosens Bioelectron ; 60: 311-7, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24835406

RESUMO

Odorant binding proteins (OBPs) are small soluble proteins found in olfactory systems that are capable of binding several types of odorant molecules. Cantilevers based on polycrystalline diamond surfaces are very promising as chemical transducers. Here two methods were investigated for chemically grafting porcine OBPs on polycrystalline diamond surfaces for biosensor development. The first approach resulted in random orientation of the immobilized proteins over the surface. The second approach based on complexing a histidine-tag located on the protein with nickel allowed control of the proteins' orientation. Evidence confirming protein grafting was obtained using electrochemical impedance spectroscopy, fluorescence imaging and X-ray photoelectron spectroscopy. The chemical sensing performances of these OBP modified transducers were assessed. The second grafting method led to typically 20% more sensitive sensors, as a result of better access of ligands to the proteins active sites and also perhaps a better yield of protein immobilization. This new grafting method appears to be highly promising for further investigation of the ligand binding properties of OBPs in general and for the development of arrays of non-specific biosensors for artificial olfaction applications.


Assuntos
Materiais Biomiméticos , Diamante/química , Espectroscopia Dielétrica/instrumentação , Sistemas Microeletromecânicos/instrumentação , Odorantes/análise , Receptores Odorantes/química , Olfato , Desenho de Equipamento , Análise de Falha de Equipamento , Ligação Proteica , Mapeamento de Interação de Proteínas/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Nanotoxicology ; 8 Suppl 1: 46-56, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24266793

RESUMO

Although nanodiamonds (NDs) appear as one of the most promising nanocarbon materials available so far for biomedical applications, their risk for human health remains unknown. Our work was aimed at defining the cytotoxicity and genotoxicity of two sets of commercial carboxylated NDs with diameters below 20 and 100 nm, on six human cell lines chosen as representative of potential target organs: HepG2 and Hep3B (liver), Caki-1 and Hek-293 (kidney), HT29 (intestine) and A549 (lung). Cytotoxicity of NDs was assessed by measuring cell impedance (xCELLigence® system) and cell survival/death by flow cytometry while genotoxicity was assessed by γ-H2Ax foci detection, which is considered the most sensitive technique for studying DNA double-strand breaks. To validate and check the sensitivity of the techniques, aminated polystyrene nanobeads were used as positive control in all assays. Cell incorporation of NDs was also studied by flow cytometry and luminescent N-V center photoluminescence (confirmed by Raman microscopy), to ensure that nanoparticles entered the cells. Overall, we show that NDs effectively entered the cells but NDs do not induce any significant cytotoxic or genotoxic effects on the six cell lines up to an exposure dose of 250 µg/mL. Taken together these results strongly support the huge potential of NDs for human nanomedicine but also their potential as negative control in nanotoxicology studies.


Assuntos
Ácidos Carboxílicos/química , Intestinos/efeitos dos fármacos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanodiamantes , Linhagem Celular , Citometria de Fluxo , Humanos , Microscopia Confocal
5.
Phys Med Biol ; 58(21): 7647-60, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24113353

RESUMO

Recent developments of new therapy techniques using small photon beams, such as stereotactic radiotherapy, require suitable detectors to determine the delivered dose with a high accuracy. The dosimeter has to be as close as possible to tissue equivalence and to exhibit a small detection volume compared to the size of the irradiation field, because of the lack of lateral electronic equilibrium in small beam. Characteristics of single crystal diamond (tissue equivalent material Z = 6, high density) make it an ideal candidate to fulfil most of small beam dosimetry requirements. A commercially available Element Six electronic grade synthetic diamond was used to develop a single crystal diamond dosimeter (SCDDo) with a small detection volume (0.165 mm(3)). Long term stability was studied by irradiating the SCDDo in a (60)Co beam over 14 h. A good stability (deviation less than ± 0.1%) was observed. Repeatability, dose linearity, dose rate dependence and energy dependence were studied in a 10 × 10 cm(2) beam produced by a Varian Clinac 2100 C linear accelerator. SCDDo lateral dose profile, depth dose curve and output factor (OF) measurements were performed for small photon beams with a micro multileaf collimator m3 (BrainLab) attached to the linac. This study is focused on the comparison of SCDDo measurements to those obtained with different commercially available active detectors: an unshielded silicon diode (PTW 60017), a shielded silicon diode (Sun Nuclear EDGE), a PinPoint ionization chamber (PTW 31014) and two natural diamond detectors (PTW 60003). SCDDo presents an excellent spatial resolution for dose profile measurements, due to its small detection volume. Low energy dependence (variation of 1.2% between 6 and 18 MV photon beam) and low dose rate dependence of the SCDDo (variation of 1% between 0.53 and 2.64 Gy min(-1)) are obtained, explaining the good agreement between the SCDDo and the efficient unshielded diode (PTW 60017) in depth dose curve measurements. For field sizes ranging from 0.6 × 0.6 to 10 × 10 cm(2), OFs obtained with the SCDDo are between the OFs measured with the PinPoint ionization chamber and the Sun Nuclear EDGE diode that are known to respectively underestimate and overestimate OF values in small beam, due to the large detection volume of the chamber and the non-water equivalence of both detectors.


Assuntos
Diamante/química , Radiometria/instrumentação , Fótons/uso terapêutico , Fatores de Tempo , Água
6.
J Neural Eng ; 10(5): 056022, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24045617

RESUMO

OBJECTIVE: Detonation nanodiamond monolayer coatings are exceptionally biocompatible substrates for in vitro cell culture. However, the ability of nanodiamond coatings of different origin, size, surface chemistry and morphology to promote neuronal adhesion, and the ability to pattern neurons with nanodiamonds have yet to be investigated. APPROACH: Various nanodiamond coatings of different type are investigated for their ability to promote neuronal adhesion with respect to surface coating parameters and neurite extension. Nanodiamond tracks are patterned using photolithography and reactive ion etching. MAIN RESULTS: Universal promotion of neuronal adhesion is observed on all coatings tested and analysis shows surface roughness to not be a sufficient metric to describe biocompatibility, but instead nanoparticle size and curvature shows a significant correlation with neurite extension. Furthermore, neuronal patterning is achieved with high contrast using patterned nanodiamond coatings down to at least 10 µm. SIGNIFICANCE: The results of nanoparticle size and curvature being influential upon neuronal adhesion has great implications towards biomaterial design, and the ability to pattern neurons using nanodiamond tracks shows great promise for applications both in vitro and in vivo.


Assuntos
Adesão Celular/fisiologia , Diamante , Nanopartículas , Rede Nervosa/fisiologia , Redes Neurais de Computação , Neurônios/fisiologia , Animais , Interfaces Cérebro-Computador , Hipocampo/citologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Camundongos , Microscopia de Força Atômica , Tamanho da Partícula , Cultura Primária de Células , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Propriedades de Superfície
7.
J Neural Eng ; 8(4): 046020, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21701056

RESUMO

Three-dimensional electrode geometries were proposed to increase the spatial resolution in retinal prostheses aiming at restoring vision in blind patients. We report here the results from a study in which finite-element modeling was used to design and optimize three-dimensional electrode geometries. Proposed implants exhibit an array of well-like shapes containing stimulating electrodes at their bottom, while the common return grid electrode surrounds each well on the implant top surface. Extending stimulating electrodes and/or the grid return electrode on the walls of the cavities was also considered. The goal of the optimization was to find model parameters that maximize the focalization of electrical stimulation, and therefore the spatial resolution of the electrode array. The results showed that electrode geometries with a well depth of 30 µm yield a tenfold increase in selectivity compared to the planar structures of similar electrode dimensions. Electrode array prototypes were microfabricated and implanted in dystrophic rats to determine if the tissue would behave as hypothesized in the model. Histological examination showed that retinal bipolar cells integrate the electrode well, creating isolated cell clusters. The modeling analysis showed that the stimulation current is confounded within the electrode well, leading to selective electrical stimulation of the individual bipolar cell clusters and thereby to electrode arrays with higher spatial resolution.


Assuntos
Eletrodos Implantados , Próteses e Implantes , Desenho de Prótese , Retina/fisiologia , Algoritmos , Animais , Cegueira/reabilitação , Movimento Celular , Estimulação Elétrica , Endoscopia , Análise de Elementos Finitos , Microcomputadores , Microtecnologia , Modelos Neurológicos , Neuroglia/fisiologia , Ratos , Retina/anatomia & histologia , Células Bipolares da Retina/fisiologia , Fixação de Tecidos
8.
Phys Chem Chem Phys ; 13(24): 11511-6, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21611640

RESUMO

This paper presents a review of the properties induced by the presence of hydrogen in monocrystalline boron-doped diamond (BDD) and proposes a comparison with results obtained on polycrystalline materials. Hydrogen diffusion, luminescence and electrical properties show the passivation of boron acceptors in diamond by the formation of (B,H) complexes, in both monocrystalline and polycrystalline forms, but at a different level. This behaviour raises open questions concerning the role of structural defects in the passivation of boron impurities by hydrogenation. Based on the assessment of the high thermal stability of (B,H) complexes, this approach leads to a route to provide patterned diamond conductive structures for micro as well as for nanotechnology applications.

9.
Phys Chem Chem Phys ; 13(24): 11517-23, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21566816

RESUMO

Hydrogen terminations (C-H) confer to diamond layers specific surface properties such as a negative electron affinity and a superficial conductive layer, opening the way to specific functionalization routes. For example, efficient covalent bonding of diazonium salts or of alkene moieties can be performed on hydrogenated diamond thin films, owing to electronic exchanges at the interface. Here, we report on the chemical reactivity of fully hydrogenated High Pressure High Temperature (HPHT) nanodiamonds (H-NDs) towards such grafting, with respect to the reactivity of as-received NDs. Chemical characterizations such as FTIR, XPS analysis and Zeta potential measurements reveal a clear selectivity of such couplings on H-NDs, suggesting that C-H related surface properties remain dominant even on particles at the nanoscale. These results on hydrogenated NDs open up the route to a broad range of new functionalizations for innovative NDs applications development.


Assuntos
Nanodiamantes/química , Alcenos/química , Compostos Azo/química , Carbono/química , Hidrogênio/química , Hidrogenação , Espectroscopia Fotoeletrônica , Pressão , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura
10.
Phys Rev Lett ; 105(14): 140502, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21230818

RESUMO

We report the realization of a quantum circuit in which an ensemble of electronic spins is coupled to a frequency tunable superconducting resonator. The spins are nitrogen-vacancy centers in a diamond crystal. The achievement of strong coupling is manifested by the appearance of a vacuum Rabi splitting in the transmission spectrum of the resonator when its frequency is tuned through the nitrogen-vacancy center electron spin resonance.

11.
J Synchrotron Radiat ; 13(Pt 2): 151-8, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16495615

RESUMO

Polycrystalline diamond synthesized using the chemical vapour deposition (CVD) technique can be used to fabricate new types of photodetectors for the characterization of X-ray light in synchrotron beamlines. Since diamond exhibits a low absorption to low-energy photons, such devices allow beam-position monitoring with very little beam attenuation at photon energies as low as 2 keV up to 15-20 keV. Here it is shown how diamond-based devices can simply be processed as ionization chambers for advanced semi-transparent position monitoring with high position resolution (<2 microm). Other configurations using the same principle can also enable in-line field profiling. It is also shown what can be expected from these devices in terms of performances, signal-to-noise ratios and reliability, together with their inherent limitations caused by the presence of defects in polycrystalline materials. In particular, diamond devices with extremely low carrier lifetimes, owing to quenched transport properties, could also be of particular interest for the characterization of the temporal structure of synchrotron light. Interest in these devices lies in the permanent insertion into beamlines and withstanding high levels of radiation for continuous beam monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...