Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Neurobiol ; 43(6): 3023-3035, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37130995

RESUMO

Growing evidence indicates that the pathological alpha-synuclein (α-syn) aggregation in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) starts at the synapses. Physiologic α-syn is involved in regulating neurotransmitter release by binding to the SNARE complex protein VAMP-2 on synaptic vesicles. However, in which way the SNARE complex formation is affected by α-syn pathology remains unclear. In this study, primary cortical neurons were exposed to either α-syn monomers or preformed fibrils (PFFs) for different time points and the effect on SNARE protein distribution was analyzed with a novel proximity ligation assay (PLA). Short-term exposure to monomers or PFFs for 24 h increased the co-localization of VAMP-2 and syntaxin-1, but reduced the co-localization of SNAP-25 and syntaxin-1, indicating a direct effect of the added α-syn on SNARE protein distribution. Long-term exposure to α-syn PFFs for 7 d reduced VAMP-2 and SNAP-25 co-localization, although there was only a modest induction of ser129 phosphorylated (pS129) α-syn. Similarly, exposure to extracellular vesicles collected from astrocytes treated with α-syn PFFs for 7 d influenced VAMP-2 and SNAP-25 co-localization despite only low levels of pS129 α-syn being formed. Taken together, our results demonstrate that different α-syn proteoforms have the potential to alter the distribution of SNARE proteins at the synapse.


Assuntos
Proteína 2 Associada à Membrana da Vesícula , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteínas SNARE , Neurônios/metabolismo , Proteínas Qa-SNARE
2.
Front Mol Biosci ; 10: 1080112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793785

RESUMO

Introduction: Parkinson's disease and type 2 diabetes have both elements of local amyloid depositions in their pathogenesis. In Parkinson's disease, alpha-synuclein (aSyn) forms insoluble Lewy bodies and Lewy neurites in brain neurons, and in type 2 diabetes, islet amyloid polypeptide (IAPP) comprises the amyloid in the islets of Langerhans. In this study, we assessed the interaction between aSyn and IAPP in human pancreatic tissues, both ex vivo and in vitro. Material and Methods: The antibody-based detection techniques, proximity ligation assay (PLA), and immuno-TEM were used for co-localization studies. Bifluorescence complementation (BiFC) was used for interaction studies between IAPP and aSyn in HEK 293 cells. The Thioflavin T assay was used for studies of cross-seeding between IAPP and aSyn. ASyn was downregulated with siRNA, and insulin secretion was monitored using TIRF microscopy. Results: We demonstrate intracellular co-localization of aSyn with IAPP, while aSyn is absent in the extracellular amyloid deposits. ASyn reactivity is present in the secretory granules of ß-cells and some α-cells in human islets. The BiFC-expression of aSyn/aSyn and IAPP/IAPP in HEK293 cells resulted in 29.3% and 19.7% fluorescent cells, respectively, while aSyn/IAPP co-expression resulted in ∼10% fluorescent cells. Preformed aSyn fibrils seeded IAPP fibril formation in vitro, but adding preformed IAPP seeds to aSyn did not change aSyn fibrillation. In addition, mixing monomeric aSyn with monomeric IAPP did not affect IAPP fibril formation. Finally, the knockdown of endogenous aSyn did not affect ß cell function or viability, nor did overexpression of aSyn affect ß cell viability. Discussion: Despite the proximity of aSyn and IAPP in ß-cells and the detected capacity of preformed aSyn fibrils to seed IAPP in vitro, it is still an open question if an interaction between the two molecules is of pathogenic significance for type 2 diabetes.

3.
Pharmaceutics ; 14(7)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35890306

RESUMO

Immunotherapy targeting aggregated alpha-synuclein (αSYN) is a promising approach for the treatment of Parkinson's disease. However, brain penetration of antibodies is hampered by their large size. Here, RmAbSynO2-scFv8D3, a modified bispecific antibody that targets aggregated αSYN and binds to the transferrin receptor for facilitated brain uptake, was investigated to treat αSYN pathology in transgenic mice. Ex vivo analyses of the blood and brain distribution of RmAbSynO2-scFv8D3 and the unmodified variant RmAbSynO2, as well as in vivo analyses with microdialysis and PET, confirmed fast and efficient brain uptake of the bispecific format. In addition, intravenous administration was shown to be superior to intraperitoneal injections in terms of brain uptake and distribution. Next, aged female αSYN transgenic mice (L61) were administered either RmAbSynO2-scFv8D3, RmAbSynO2, or PBS intravenously three times over five days. Levels of TBS-T soluble aggregated αSYN in the brain following treatment with RmAbSynO2-scFv8D3 were decreased in the cortex and midbrain compared to RmAbSynO2 or PBS controls. Taken together, our results indicate that facilitated brain uptake of αSYN antibodies can improve treatment of αSYN pathology.

4.
Brain Behav ; 12(7): e2628, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35652155

RESUMO

BACKGROUND: Intracellular deposition of alpha-synuclein (α-syn) as Lewy bodies and Lewy neurites is a central event in the pathogenesis of Parkinson's disease (PD) and other α-synucleinopathies. Transgenic mouse models overexpressing human α-syn, are useful research tools in preclinical studies of pathogenetic mechanisms. Such mice develop α-syn inclusions as well as neurodegeneration with a topographical distribution that varies depending on the choice of promoter and which form of α-syn that is overexpressed. Moreover, they display motor symptoms and cognitive disturbances that to some extent resemble the human conditions. PURPOSE: One of the main motives for assessing behavior in these mouse models is to evaluate the potential of new treatment strategies, including their impact on motor and cognitive symptoms. However, due to a high within-group variability with respect to such features, the behavioral studies need to be applied with caution. In this review, we discuss how to make appropriate choices in the experimental design and which tests that are most suitable for the evaluation of PD-related symptoms in such studies. METHODS: We have evaluated published results on two selected transgenic mouse models overexpressing wild type (L61) and mutated (A30P) α-syn in the context of their validity and utility for different types of behavioral studies. CONCLUSIONS: By applying appropriate behavioral tests, α-syn transgenic mouse models provide an appropriate experimental platform for studies of symptoms related to PD and other α-synucleinopathies.


Assuntos
Doença de Parkinson , Sinucleinopatias , Animais , Modelos Animais de Doenças , Humanos , Corpos de Lewy/patologia , Camundongos , Camundongos Transgênicos , Doença de Parkinson/genética , Doença de Parkinson/patologia , Sinucleinopatias/genética , alfa-Sinucleína/genética
5.
Neuropharmacology ; 208: 108985, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149134

RESUMO

The protein alpha-synuclein (αSYN) plays a central role in synucleinopathies such as Parkinsons's disease (PD) and multiple system atrophy (MSA). Presently, there are no selective αSYN positron emission tomography (PET) radioligands that do not also show affinity to amyloid-beta (Aß). We have previously shown that radiolabeled antibodies, engineered to enter the brain via the transferrin receptor (TfR), is a promising approach for PET imaging of intrabrain targets. In this study, we used this strategy to visualize αSYN in the living mouse brain. Five bispecific antibodies, binding to both the murine TfR and αSYN were generated and radiolabeled with iodine-125 or iodine-124. All bispecific antibodies bound to αSYN and mTfR before and after radiolabelling in an ELISA assay, and bound to brain sections prepared from αSYN overexpressing mice as well as human PD- and MSA subjects, but not control tissues in autoradiography. Brain concentrations of the bispecific antibodies were between 26 and 63 times higher than the unmodified IgG format 2 h post-injection, corresponding to about 1.5% of the injected dose per gram brain tissue. Additionally, intrastriatal αSYN fibrils were visualized with PET in an αSYN deposition mouse model with one of the bispecific antibodies, [124I]RmAbSynO2-scFv8D3. However, PET images acquired in αSYN transgenic mice with verified brain pathology injected with [124I]RmAbSynO2-scFv8D3 and [124I]RmAb48-scFv8D3 showed no increase in antibody retention compared to WT mice. Despite successful imaging of deposited extracellular αSYN using a brain-penetrating antibody-based radioligand with no cross-specificity towards Aß, this proof-of-concept study demonstrates challenges in imaging intracellular αSYN inclusions present in synucleinopathies.


Assuntos
Anticorpos Biespecíficos , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Sinucleinopatias , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos Biespecíficos/metabolismo , Encéfalo/metabolismo , Humanos , Camundongos , Atrofia de Múltiplos Sistemas/metabolismo , Doença de Parkinson/metabolismo , Tomografia por Emissão de Pósitrons/métodos , alfa-Sinucleína/metabolismo
6.
Neurobiol Dis ; 161: 105543, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34737044

RESUMO

A growing body of evidence suggests that aggregated α-synuclein, the major constituent of Lewy bodies, plays a key role in the pathogenesis of Parkinson's disease and related α-synucleinopathies. Immunotherapies, both active and passive, against α-synuclein have been developed and are promising novel treatment strategies for such disorders. Here, we report on the humanization and pharmacological characteristics of ABBV-0805, a monoclonal antibody that exhibits a high selectivity for human aggregated α-synuclein and very low affinity for monomers. ABBV-0805 binds to a broad spectrum of soluble aggregated α-synuclein, including small and large aggregates of different conformations. Binding of ABBV-0805 to pathological α-synuclein was demonstrated in Lewy body-positive post mortem brains of Parkinson's disease patients. The functional potency of ABBV-0805 was demonstrated in several cellular assays, including Fcγ-receptor mediated uptake of soluble aggregated α-synuclein in microglia and inhibition of neurotoxicity in primary neurons. In vivo, the murine version of ABBV-0805 (mAb47) displayed significant dose-dependent decrease of α-synuclein aggregates in brain in several mouse models, both in prophylactic and therapeutic settings. In addition, mAb47 treatment of α-synuclein transgenic mice resulted in a significantly prolonged survival. ABBV-0805 selectively targets soluble toxic α-synuclein aggregates with a picomolar affinity and demonstrates excellent in vivo efficacy. Based on the strong preclinical findings described herein, ABBV-0805 has been progressed into clinical development as a potential disease-modifying treatment for Parkinson's disease.


Assuntos
Anticorpos Monoclonais , Doença de Parkinson , Sinucleinopatias , Animais , Anticorpos Monoclonais/uso terapêutico , Humanos , Longevidade , Camundongos , Camundongos Transgênicos , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Sinucleinopatias/terapia , alfa-Sinucleína/metabolismo
7.
J Neurosci Res ; 99(10): 2525-2539, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34292621

RESUMO

Aggregation of alpha-synuclein (α-syn) into Lewy bodies and Lewy neurites is a pathological hallmark in the Parkinson´s disease (PD) brain. The formation of α-syn oligomers is believed to be an early pathogenic event and the A30P mutation in the gene encoding α-syn, causing familial PD, has been shown to cause an accelerated oligomerization. Due to the problem of preserving antigen conformation on tissue surfaces, α-syn oligomers are difficult to detect ex vivo using conventional immunohistochemistry with oligomer-selective antibodies. Herein, we have instead employed the previously reported α-syn oligomer proximity ligation assay (ASO-PLA), along with a wide variety of biochemical assays, to discern the pathological progression of α-syn oligomers and their impact on the dopaminergic system in male and female (Thy-1)-h[A30P]α-syn transgenic (A30P-tg) mice. Our results reveal a previously undetected abundance of α-syn oligomers in midbrain of young mice, whereas phosphorylated (pS129) and proteinase k-resistant α-syn species were observed to a larger extent in aged mice. Although we did not detect loss of dopaminergic neurons in A30P-tg mice, a dysregulation in the monoaminergic system was recorded in older mice. Taken together, ASO-PLA should be a useful method for the detection of early changes in α-syn aggregation on brain tissue, from experimental mouse models in addition to post mortem PD cases.


Assuntos
Encéfalo/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Antígenos Thy-1/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/patologia , Dopamina/genética , Neurônios Dopaminérgicos/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença de Parkinson/genética , Doença de Parkinson/patologia , Antígenos Thy-1/genética , alfa-Sinucleína/genética
8.
J Neuroinflammation ; 18(1): 124, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082772

RESUMO

BACKGROUND: Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by brain accumulation of aggregated amyloid-beta (Aß) and alpha-synuclein (αSYN), respectively. In order to develop effective therapies, it is crucial to understand how the Aß/αSYN aggregates can be cleared. Compelling data indicate that neuroinflammatory cells, including astrocytes and microglia, play a central role in the pathogenesis of AD and PD. However, how the interplay between the two cell types affects their clearing capacity and consequently the disease progression remains unclear. METHODS: The aim of the present study was to investigate in which way glial crosstalk influences αSYN and Aß pathology, focusing on accumulation and degradation. For this purpose, human-induced pluripotent cell (hiPSC)-derived astrocytes and microglia were exposed to sonicated fibrils of αSYN or Aß and analyzed over time. The capacity of the two cell types to clear extracellular and intracellular protein aggregates when either cultured separately or in co-culture was studied using immunocytochemistry and ELISA. Moreover, the capacity of cells to interact with and process protein aggregates was tracked using time-lapse microscopy and a customized "close-culture" chamber, in which the apical surfaces of astrocyte and microglia monocultures were separated by a <1 mm space. RESULTS: Our data show that intracellular deposits of αSYN and Aß are significantly reduced in co-cultures of astrocytes and microglia, compared to monocultures of either cell type. Analysis of conditioned medium and imaging data from the "close-culture" chamber experiments indicate that astrocytes secrete a high proportion of their internalized protein aggregates, while microglia do not. Moreover, co-cultured astrocytes and microglia are in constant contact with each other via tunneling nanotubes and other membrane structures. Notably, our live cell imaging data demonstrate that microglia, when attached to the cell membrane of an astrocyte, can attract and clear intracellular protein deposits from the astrocyte. CONCLUSIONS: Taken together, our data demonstrate the importance of astrocyte and microglia interactions in Aß/αSYN clearance, highlighting the relevance of glial cellular crosstalk in the progression of AD- and PD-related brain pathology.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Microglia/metabolismo , Microglia/patologia , Agregados Proteicos , Agregação Patológica de Proteínas , alfa-Sinucleína/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Estruturas da Membrana Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Humanos , Células-Tronco Pluripotentes Induzidas , Microscopia Confocal , Nanotubos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteólise
9.
Neurobiol Aging ; 101: 207-220, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33639338

RESUMO

The pathogenesis of Parkinson's disease involves fibrillization and deposition of alpha-synuclein (α-syn) into Lewy bodies. Accumulating evidence suggests that α-syn oligomers are particularly neurotoxic. Transgenic (tg) mice overexpressing wild-type human α-syn under the Thy-1 promoter (L61) reproduce many Parkinson's disease features, but the pathogenetic relevance of α-syn oligomers in this mouse model has not been studied in detail. Here, we report an age progressive increase of α-syn oligomers in the brain of L61 tg mice. Interestingly, more profound motor symptoms were observed in animals with higher levels of membrane-bound oligomers. As this tg model is X-linked, we also performed subset analyses, indicating that both sexes display a similar age-related increase in α-syn oligomers. However, compared with females, males featured increased brain levels of oligomers from an earlier age, in addition to a more severe behavioral phenotype with hyperactivity and thigmotaxis in the open field test. Taken together, our data indicate that α-syn oligomers are central to the development of brain pathology and behavioral deficits in the L61 tg α-syn mouse model.


Assuntos
Envelhecimento/metabolismo , Corpos de Lewy/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Expressão Gênica , Masculino , Camundongos Transgênicos , Regiões Promotoras Genéticas , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo
10.
J Neuroinflammation ; 17(1): 119, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299492

RESUMO

BACKGROUND: Many lines of evidence suggest that accumulation of aggregated alpha-synuclein (αSYN) in the Parkinson's disease (PD) brain causes infiltration of T cells. However, in which ways the stationary brain cells interact with the T cells remain elusive. Here, we identify astrocytes as potential antigen-presenting cells capable of activating T cells in the PD brain. Astrocytes are a major component of the nervous system, and accumulating data indicate that astrocytes can play a central role during PD progression. METHODS: To investigate the role of astrocytes in antigen presentation and T-cell activation in the PD brain, we analyzed post mortem brain tissue from PD patients and controls. Moreover, we studied the capacity of cultured human astrocytes and adult human microglia to act as professional antigen-presenting cells following exposure to preformed αSYN fibrils. RESULTS: Our analysis of post mortem brain tissue demonstrated that PD patients express high levels of MHC-II, which correlated with the load of pathological, phosphorylated αSYN. Interestingly, a very high proportion of the MHC-II co-localized with astrocytic markers. Importantly, we found both perivascular and infiltrated CD4+ T cells to be surrounded by MHC-II expressing astrocytes, confirming an astrocyte T cell cross-talk in the PD brain. Moreover, we showed that αSYN accumulation in cultured human astrocytes triggered surface expression of co-stimulatory molecules critical for T-cell activation, while cultured human microglia displayed very poor antigen presentation capacity. Notably, intercellular transfer of αSYN/MHC-II deposits occurred between astrocytes via tunneling nanotubes, indicating spreading of inflammation in addition to toxic protein aggregates. CONCLUSIONS: In conclusion, our data from histology and cell culture studies suggest an important role for astrocytes in antigen presentation and T-cell activation in the PD brain, highlighting astrocytes as a promising therapeutic target in the context of chronic inflammation.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Microglia/metabolismo , Doença de Parkinson/metabolismo , Idoso , Idoso de 80 Anos ou mais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/patologia , Astrócitos/imunologia , Astrócitos/patologia , Encéfalo/imunologia , Encéfalo/patologia , Células Cultivadas , Feminino , Humanos , Masculino , Microglia/imunologia , Microglia/patologia , Pessoa de Meia-Idade , Doença de Parkinson/imunologia , Doença de Parkinson/patologia
11.
Front Mol Neurosci ; 12: 200, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555088

RESUMO

Recently, extracellular vesicles (EVs), such as exosomes, have been proposed to play an influential role in the cell-to-cell spread of neurodegenerative diseases, including the intercellular transmission of α-synuclein (α-syn). However, the regulation of EV biogenesis and its relation to Parkinson's disease (PD) is only partially understood. The generation of EVs through the ESCRT-independent pathway depends on the hydrolysis of sphingomyelin by neutral sphingomyelinase 2 (nSMase2) to produce ceramide, which causes the membrane of endosomal multivesicular bodies to bud inward. nSMase2 is sensitive to oxidative stress, a common process in PD brains; however, little is known about the role of sphingomyelin metabolism in the pathogenesis of PD. This is the first study to show that inhibiting nSMase2 decreases the transfer of oligomeric aggregates of α-syn between neuron-like cells. Furthermore, it reduced the accumulation and aggregation of high-molecular-weight α-syn. Hypoxia, as a model of oxidative stress, reduced the levels of nSMase2, but not its enzymatic activity, and significantly altered the lipid composition of cells without affecting EV abundance or the transfer of α-syn. These data show that altering sphingolipids can mitigate the spread of α-syn, even under hypoxic conditions, potentially suppressing PD progression.

12.
Cell Mol Neurobiol ; 38(8): 1539-1550, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30288631

RESUMO

In Parkinson's disease and other Lewy body disorders, the propagation of pathology has been accredited to the spreading of extracellular α-synuclein (α-syn). Although the pathogenic mechanisms are not fully understood, cell-to-cell transfer of α-syn via exosomes and other extracellular vesicles (EVs) has been reported. Here, we investigated whether altered molecular properties of α-syn can influence the distribution and secretion of α-syn in human neuroblastoma cells. Different α-syn variants, including α-syn:hemi-Venus and disease-causing mutants, were overexpressed and EVs were isolated from the conditioned medium. Of the secreted α-syn, 0.1-2% was associated with vesicles. The major part of EV α-syn was attached to the outer membrane of vesicles, whereas a smaller fraction was found in their lumen. For α-syn expressed with N-terminal hemi-Venus, the relative levels associated with EVs were higher than for WT α-syn. Moreover, such EV-associated α-syn:hemi-Venus species were internalized in recipient cells to a higher degree than the corresponding free-floating forms. Among the disease-causing mutants, A53T α-syn displayed an increased association with EVs. Taken together, our data suggest that α-syn species with presumably lost physiological functions or altered aggregation properties may shift the cellular processing towards vesicular secretion. Our findings thus lend further support to the tenet that EVs can mediate spreading of harmful α-syn species and thereby contribute to the pathology in α-synucleinopathies.


Assuntos
Vesículas Extracelulares/metabolismo , alfa-Sinucleína/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Exossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Mutantes/metabolismo , Proteínas tau/metabolismo
13.
Methods Mol Biol ; 1779: 61-71, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29886527

RESUMO

Alpha-synuclein oligomers are linked to the pathogenesis of Parkinson's disease and related neurodegenerative diseases. In this chapter, we present a method to generate kinetically stable α-synuclein oligomers by the addition of reactive aldehydes, 4-hydroxy-2-nonenal, and 4-oxo-2-nonenal. We also describe biochemical and immunological techniques to characterize the generated oligomers.


Assuntos
Aldeídos/química , Doença de Parkinson/metabolismo , alfa-Sinucleína/síntese química , Eletroforese em Gel de Poliacrilamida , Humanos , Microscopia de Força Atômica , Multimerização Proteica , Estabilidade Proteica , alfa-Sinucleína/química
14.
Front Neurol ; 9: 180, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29623065

RESUMO

The aggregation of alpha-synuclein (αSyn) is the pathological hallmark of Parkinson's disease, dementia with Lewy bodies and related neurological disorders. However, the physiological function of the protein and how this function relates to its pathological effects remain poorly understood. One of the proposed roles of αSyn is to promote the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly by binding to VAMP-2. The objective of this study was to visualize the co-localization between αSyn and the SNARE proteins (VAMP-2, SNAP-25, and syntaxin-1) for the first time using in situ proximity ligation assay (PLA). Cortical primary neurons were cultured from either non-transgenic or transgenic mice expressing human αSyn with the A30P mutation under the Thy-1 promoter. With an antibody recognizing both mouse and human αSyn, a PLA signal indicating close proximity between αSyn and the three SNARE proteins was observed both in the soma and throughout the processes. No differences in the extent of PLA signals were seen between non-transgenic and transgenic neurons. With an antibody specific against human αSyn, the PLA signal was mostly located to the soma and was only present in a few cells. Taken together, in situ PLA is a method that can be used to investigate the co-localization of αSyn and the SNARE proteins in primary neuronal cultures.

15.
Brain Behav ; 8(3): e00915, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29541535

RESUMO

Introduction: Intraneuronal inclusions of alpha-synuclein are commonly found in the brain of patients with Parkinson's disease and other α-synucleinopathies. The correlation between alpha-synuclein pathology and symptoms has been studied in various animal models. In (Thy-1)-h[A30P] alpha-synuclein transgenic mice, behavioral and motor abnormalities were reported from 12 and 15 months, respectively. The aim of this study was to investigate whether these mice also display symptoms at earlier time points. Methods: We analyzed gait deficits, locomotion, and behavioral profiles in (Thy-1)-h[A30P] alpha-synuclein and control mice at 2, 8, and 11 months of age. In addition, inflammatory markers, levels of alpha-synuclein oligomers, and tyrosine hydroxylase reactivity were studied. Results: Already at 2 months of age, transgenic mice displayed fine motor impairments in the challenging beam test that progressively increased up to 11 months of age. At 8 months, transgenic mice showed a decreased general activity with increased risk-taking behavior in the multivariate concentric square field test. Neuropathological analyses of 8- and 11-month-old mice revealed accumulation of oligomeric alpha-synuclein in neuronal cell bodies. In addition, a decreased presence of tyrosine hydroxylase suggests a dysregulation of the dopaminergic system in the transgenic mice, which in turn may explain some of the motor impairments observed in this mouse model. Conclusions: Taken together, our results show that the (Thy-1)-h[A30P] alpha-synuclein transgenic mouse model displays early Parkinson's disease-related symptoms with a concomitant downregulation of the dopaminergic system. Thus, this should be an appropriate model to study early phenotypes of alpha-synucleinopathies.


Assuntos
Comportamento Animal/fisiologia , Transtornos Motores/fisiopatologia , Transtornos Motores/psicologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/psicologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora , alfa-Sinucleína
17.
J Neuroinflammation ; 14(1): 241, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29228971

RESUMO

BACKGROUND: Due to its neurotoxic properties, oligomeric alpha-synuclein (α-syn) has been suggested as an attractive target for passive immunization against Parkinson's disease (PD). In mouse models of PD, antibody treatment has been shown to lower the levels of pathogenic α-syn species, including oligomers, although the mechanisms of action remain unknown. We have previously shown that astrocytes rapidly engulf α-syn oligomers that are intracellularly stored, rather than degraded, resulting in impaired mitochondria. METHODS: The aim of the present study was to investigate if the accumulation of α-syn in astrocytes can be affected by α-syn oligomer-selective antibodies. Co-cultures of astrocytes, neurons, and oligodendrocytes were derived from embryonic mouse cortex and exposed to α-syn oligomers or oligomers pre-incubated with oligomer-selective antibodies. RESULTS: In the presence of antibodies, the astrocytes displayed an increased clearance of the exogenously added α-syn, and consequently, the α-syn accumulation in the culture was markedly reduced. Moreover, the addition of antibodies rescued the astrocytes from the oligomer-induced mitochondrial impairment. CONCLUSIONS: Our results demonstrate that oligomer-selective antibodies can prevent α-syn accumulation and mitochondrial dysfunction in cultured astrocytes.


Assuntos
Anticorpos Monoclonais/farmacologia , Astrócitos/metabolismo , Mitocôndrias/efeitos dos fármacos , alfa-Sinucleína/antagonistas & inibidores , Animais , Corpos de Inclusão , Espaço Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/patologia , Doença de Parkinson
18.
J Neurosci ; 37(49): 11835-11853, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29089438

RESUMO

Many lines of evidence suggest that the Parkinson's disease (PD)-related protein α-synuclein (α-SYN) can propagate from cell to cell in a prion-like manner. However, the cellular mechanisms behind the spreading remain elusive. Here, we show that human astrocytes derived from embryonic stem cells actively transfer aggregated α-SYN to nearby astrocytes via direct contact and tunneling nanotubes (TNTs). Failure in the astrocytes' lysosomal digestion of excess α-SYN oligomers results in α-SYN deposits in the trans-Golgi network followed by endoplasmic reticulum swelling and mitochondrial disturbances. The stressed astrocytes respond by conspicuously sending out TNTs, enabling intercellular transfer of α-SYN to healthy astrocytes, which in return deliver mitochondria, indicating a TNT-mediated rescue mechanism. Using a pharmacological approach to inhibit TNT formation, we abolished the transfer of both α-SYN and mitochondria. Together, our results highlight the role of astrocytes in α-SYN cell-to-cell transfer, identifying possible pathophysiological events in the PD brain that could be of therapeutic relevance.SIGNIFICANCE STATEMENT Astrocytes are the major cell type in the brain, yet their role in Parkinson's disease progression remains elusive. Here, we show that human astrocytes actively transfer aggregated α-synuclein (α-SYN) to healthy astrocytes via direct contact and tunneling nanotubes (TNTs), rather than degrade it. The astrocytes engulf large amounts of oligomeric α-SYN that are subsequently stored in the trans-Golgi network region. The accumulation of α-SYN in the astrocytes affects their lysosomal machinery and induces mitochondrial damage. The stressed astrocytes respond by sending out TNTs, enabling intercellular transfer of α-SYN to healthy astrocytes. Our findings highlight an unexpected role of astrocytes in the propagation of α-SYN pathology via TNTs, revealing astrocytes as a potential target for therapeutic intervention.


Assuntos
Astrócitos/química , Astrócitos/metabolismo , Nanotubos , alfa-Sinucleína/análise , alfa-Sinucleína/metabolismo , Astrócitos/ultraestrutura , Comunicação Celular/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/química , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/ultraestrutura , Humanos , alfa-Sinucleína/ultraestrutura
19.
Front Immunol ; 8: 911, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824636

RESUMO

Antigen-specific IgG antibodies, passively administered together with large particulate antigens such as erythrocytes, can completely suppress the antigen-specific antibody response. The mechanism behind has been elusive. Herein, we made the surprising observation that mice immunized with IgG anti-sheep red blood cells (SRBC) and SRBC, in spite of a severely suppressed anti-SRBC response, have a strong germinal center (GC) response. This occurred regardless of whether the passively administered IgG was of the same allotype as that of the recipient or not. Six days after immunization, the GC size and the number of GC B cells were higher in mice immunized with SRBC alone than in mice immunized with IgG and SRBC, but at the other time points these parameters were similar. GCs in the IgG-groups had a slight shift toward dark zone B cells 6 days after immunization and toward light zone B cells 10 days after immunization. The proportions of T follicular helper cells (TFH) and T follicular regulatory cells (TFR) were similar in the two groups. Interestingly, mice immunized with allogeneic IgG anti-SRBC together with SRBC mounted a vigorous antibody response against the passively administered suppressive IgG. Thus, although their anti-SRBC response was almost completely suppressed, an antibody response against allogeneic, and probably also syngeneic, IgG developed. This most likely explains the development of GCs in the absence of an anti-SRBC antibody response.

20.
Free Radic Biol Med ; 110: 421-431, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28690195

RESUMO

Aggregated alpha-synuclein is the main component of Lewy bodies, intraneuronal inclusions found in brains with Parkinson's disease and dementia with Lewy bodies. A body of evidence implicates oxidative stress in the pathogenesis of these diseases. For example, a large excess (30:1, aldehyde:protein) of the lipid peroxidation end products 4-oxo-2-nonenal (ONE) or 4-hydroxy-2-nonenal (HNE) can induce alpha-synuclein oligomer formation. The objective of the study was to investigate the effect of these reactive aldehydes on alpha-synuclein at a lower molar excess (3:1) at both physiological (7.4) and acidic (5.4) pH. As observed by size-exclusion chromatography, ONE rapidly induced the formation of alpha-synuclein oligomers at both pH values, but the effect was less pronounced under the acidic condition. In contrast, only a small proportion of alpha-synuclein oligomers were formed with low excess HNE-treatment at physiological pH and no oligomers at all under the acidic condition. With prolonged incubation times (up to 96h), more alpha-synuclein was oligomerized at physiological pH for both ONE and HNE. As determined by Western blot, ONE-oligomers were more SDS-stable and to a higher-degree cross-linked as compared to the HNE-induced oligomers. However, as shown by their greater sensitivity to proteinase K treatment, ONE-oligomers, exhibited a less compact structure than HNE-oligomers. As indicated by mass spectrometry, ONE modified most Lys residues, whereas HNE primarily modified the His50 residue and fewer Lys residues, albeit to a higher degree than ONE. Taken together, our data show that the aldehydes ONE and HNE can modify alpha-synuclein and induce oligomerization, even at low molar excess, but to a higher degree at physiological pH and seemingly through different pathways.


Assuntos
Aldeídos/química , Fragmentos de Peptídeos/análise , alfa-Sinucleína/química , Sequência de Aminoácidos , Endopeptidase K/química , Humanos , Concentração de Íons de Hidrogênio , Peroxidação de Lipídeos , Estresse Oxidativo , Multimerização Proteica , Proteólise , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...