Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hypertension ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747164

RESUMO

BACKGROUND: Inter-individual variation in blood pressure (BP) arises in part from sequence variants within enhancers modulating the expression of causal genes. We propose that these genes, active in tissues relevant to BP physiology, can be identified from tissue-level epigenomic data and genotypes of BP-phenotyped individuals. METHODS: We used chromatin accessibility data from the heart, adrenal, kidney, and artery to identify cis-regulatory elements (CREs) in these tissues and estimate the impact of common human single-nucleotide variants within these CREs on gene expression, using machine learning methods. To identify causal genes, we performed a gene-wise association test. We conducted analyses in 2 separate large-scale cohorts: 77 822 individuals from the Genetic Epidemiology Research on Adult Health and Aging and 315 270 individuals from the UK Biobank. RESULTS: We identified 309, 259, 331, and 367 genes (false discovery rate <0.05) for diastolic BP and 191, 184, 204, and 204 genes for systolic BP in the artery, kidney, heart, and adrenal, respectively, in Genetic Epidemiology Research on Adult Health and Aging; 50% to 70% of these genes were replicated in the UK Biobank, significantly higher than the 12% to 15% expected by chance (P<0.0001). These results enabled tissue expression prediction of these 988 to 2875 putative BP genes in individuals of both cohorts to construct an expression polygenic score. This score explained ≈27% of the reported single-nucleotide variant heritability, substantially higher than expected from prior studies. CONCLUSIONS: Our work demonstrates the power of tissue-restricted comprehensive CRE analysis, followed by CRE-based expression prediction, for understanding BP regulation in relevant tissues and provides dual-modality supporting evidence, CRE and expression, for the causality genes.

2.
PLoS Genet ; 19(11): e1011030, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37948459

RESUMO

Hirschsprung disease (HSCR) is associated with deficiency of the receptor tyrosine kinase RET, resulting in loss of cells of the enteric nervous system (ENS) during fetal gut development. The major contribution to HSCR risk is from common sequence variants in RET enhancers with additional risk from rare coding variants in many genes. Here, we demonstrate that these RET enhancer variants specifically alter the human fetal gut development program through significant decreases in gene expression of RET, members of the RET-EDNRB gene regulatory network (GRN), other HSCR genes, with an altered transcriptome of 2,382 differentially expressed genes across diverse neuronal and mesenchymal functions. A parsimonious hypothesis for these results is that beyond RET's direct effect on its GRN, it also has a major role in enteric neural crest-derived cell (ENCDC) precursor proliferation, its deficiency reducing ENCDCs with relative expansion of non-ENCDC cells. Thus, genes reducing RET proliferative activity can potentially cause HSCR. One such class is the 23 RET-dependent transcription factors enriched in early gut development. We show that their knockdown in human neuroblastoma SK-N-SH cells reduces RET and/or EDNRB gene expression, expanding the RET-EDNRB GRN. The human embryos we studied had major remodeling of the gut transcriptome but were unlikely to have had HSCR: thus, genetic or epigenetic changes in addition to those in RET are required for aganglionosis.


Assuntos
Elementos Facilitadores Genéticos , Trato Gastrointestinal , Proteínas Proto-Oncogênicas c-ret , Haplótipos , Humanos , Proteínas Proto-Oncogênicas c-ret/genética , Neuroblastoma , Linhagem Celular Tumoral , Doença de Hirschsprung/genética , Feto , Trato Gastrointestinal/embriologia , Crista Neural/citologia , Sistema Nervoso Entérico/embriologia , Análise da Expressão Gênica de Célula Única , Regulação da Expressão Gênica no Desenvolvimento
3.
Cell Rep ; 42(11): 113351, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37910504

RESUMO

Genome-wide association studies (GWASs) have identified numerous variants associated with polygenic traits and diseases. However, with few exceptions, a mechanistic understanding of which variants affect which genes in which tissues to modulate trait variation is lacking. Here, we present genomic analyses to explain trait heritability of blood pressure (BP) through the genetics of transcriptional regulation using GWASs, multiomics data from different tissues, and machine learning approaches. Approximately 500,000 predicted regulatory variants across four tissues explain 33.4% of variant heritability: 2.5%, 5.3%, 7.7%, and 11.8% for kidney-, adrenal-, heart-, and artery-specific variants, respectively. Variation in the enhancers involved shows greater tissue specificity than in the genes they regulate, suggesting that gene regulatory networks perturbed by enhancer variants in a tissue relevant to a phenotype are the major source of interindividual variation in BP. Thus, our study provides an approach to scan human tissue and cell types for their physiological contribution to any trait.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Humanos , Locos de Características Quantitativas/genética , Pressão Sanguínea/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Variação Genética
4.
Front Aging Neurosci ; 15: 1064178, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967821

RESUMO

Introduction: Alzheimer's Disease (AD) patients exhibit signs of motor dysfunction, including gait, locomotion, and balance deficits. Changes in motor function often precede other symptoms of AD as well as correlate with increased severity and mortality. Despite the frequent occurrence of motor dysfunction in AD patients, little is known about the mechanisms by which this behavior is altered. Methods and Results: In the present study, we investigated the relationship between cerebrovascular impairment and motor dysfunction in a mouse model of AD (Tg6799). We found an age-dependent increase of extravasated fibrinogen deposits in the cortex and striatum of AD mice. Interestingly, there was significantly decreased cerebrovascular density in the striatum of the 15-month-old as compared to 7-month-old AD mice. We also found significant demyelination and axonal damage in the striatum of aged AD mice. We analyzed striatum-related motor function and anxiety levels of AD mice at both ages and found that aged AD mice exhibited significant impairment of motor function but not in the younger AD mice. Discussion: Our finding suggests an enticing correlation between extravasated fibrinogen, cerebrovascular damage of the striatum, and motor dysfunction in an AD mouse model, suggesting a possible mechanism underlying motor dysfunction in AD.

5.
Neurobiol Aging ; 107: 96-108, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34416494

RESUMO

Vascular perturbations and cerebral hypometabolism are emerging as important components of Alzheimer's disease (AD). While various in vivo imaging modalities have been designed to detect changes of cerebral perfusion and metabolism in AD patients and animal models, study results were often heterogenous with respect to imaging techniques and animal models. We therefore evaluated cerebral perfusion and glucose metabolism of two popular transgenic AD mouse strains, TgCRND8 and 5xFAD, at 7 and 12 months-of-age under identical conditions and analyzed possible molecular mechanisms underlying heterogeneous cerebrovascular phenotypes. Results revealed disparate findings in these two strains, displaying important aspects of AD progression. TgCRND8 mice showed significantly decreased cerebral blood flow and glucose metabolism with unchanged cerebral blood volume (CBV) at 12 months-of-age whereas 5xFAD mice showed unaltered glucose metabolism with significant increase in CBV at 12 months-of-age and a biphasic pattern of early hypoperfusion followed by a rebound to normal cerebral blood flow in late disease. Finally, immunoblotting assays suggested that VEGF dependent vascular tone change may restore normoperfusion and increase CBV in 5xFAD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/fisiopatologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Circulação Cerebrovascular , Modelos Animais de Doenças , Glucose/metabolismo , Humanos , Camundongos Transgênicos
6.
J Vis Exp ; (141)2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30582601

RESUMO

This article presents methods for generating in vitro fibrin clots and analyzing the effect of beta-amyloid (Aß) protein on clot formation and structure by spectrometry and scanning electron microscopy (SEM). Aß, which forms neurotoxic amyloid aggregates in Alzheimer's disease (AD), has been shown to interact with fibrinogen. This Aß-fibrinogen interaction makes the fibrin clot structurally abnormal and resistant to fibrinolysis. Aß-induced abnormalities in fibrin clotting may also contribute to cerebrovascular aspects of the AD pathology such as microinfarcts, inflammation, as well as, cerebral amyloid angiopathy (CAA). Given the potentially critical role of neurovascular deficits in AD pathology, developing compounds which can inhibit or lessen the Aß-fibrinogen interaction has promising therapeutic value. In vitro methods by which fibrin clot formation can be easily and systematically assessed are potentially useful tools for developing therapeutic compounds. Presented here is an optimized protocol for in vitro generation of the fibrin clot, as well as analysis of the effect of Aß and Aß-fibrinogen interaction inhibitors. The clot turbidity assay is rapid, highly reproducible and can be used to test multiple conditions simultaneously, allowing for the screening of large numbers of Aß-fibrinogen inhibitors. Hit compounds from this screening can be further evaluated for their ability to ameliorate Aß-induced structural abnormalities of the fibrin clot architecture using SEM. The effectiveness of these optimized protocols is demonstrated here using TDI-2760, a recently identified Aß-fibrinogen interaction inhibitor.


Assuntos
Peptídeos beta-Amiloides/efeitos adversos , Fibrina/metabolismo , Microscopia Eletrônica de Varredura/métodos , Análise Espectral/métodos , Fibrina/análise , Humanos
7.
Biochemistry ; 57(8): 1399-1409, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29394041

RESUMO

Accumulating evidence suggests that fibrinogen, a key protein in the coagulation cascade, plays an important role in circulatory dysfunction in Alzheimer's disease (AD). Previous work has shown that the interaction between fibrinogen and ß-amyloid (Aß), a hallmark pathological protein in AD, induces plasmin-resistant abnormal blood clots, delays fibrinolysis, increases inflammation, and aggravates cognitive function in mouse models of AD. Since Aß oligomers have a much stronger affinity for fibrinogen than Aß monomers, we tested whether amyloid aggregation inhibitors could block the Aß-fibrinogen interaction and found that some Aß aggregation inhibitors showed moderate inhibitory efficacy against this interaction. We then modified a hit compound so that it not only showed a strong inhibitory efficacy toward the Aß-fibrinogen interaction but also retained its potency toward the Aß42 aggregation inhibition process. Furthermore, our best hit compound, TDI-2760, modulated Aß42-induced contact system activation, a pathological condition observed in some AD patients, in addition to inhibiting the Aß-fibrinogen interaction and Aß aggregation. Thus, TDI-2760 has the potential to lessen vascular abnormalities as well as Aß aggregation-driven pathology in AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fibrinogênio/metabolismo , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Pirimidinas/química , Pirimidinas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Desenho de Fármacos , Humanos , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/metabolismo
8.
Hum Mol Genet ; 26(1): 192-209, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28082376

RESUMO

Local mRNA translation in growing axons allows for rapid and precise regulation of protein expression in response to extrinsic stimuli. However, the role of local translation in mature CNS axons is unknown. Such a mechanism requires the presence of translational machinery and associated mRNAs in circuit-integrated brain axons. Here we use a combination of genetic, quantitative imaging and super-resolution microscopy approaches to show that mature axons in the mammalian brain contain ribosomes, the translational regulator FMRP and a subset of FMRP mRNA targets. This axonal translational machinery is associated with Fragile X granules (FXGs), which are restricted to axons in a stereotyped subset of brain circuits. FXGs and associated axonal translational machinery are present in hippocampus in humans as old as 57 years. This FXG-associated axonal translational machinery is present in adult rats, even when adult neurogenesis is blocked. In contrast, in mouse this machinery is only observed in juvenile hippocampal axons. This differential developmental expression was specific to the hippocampus, as both mice and rats exhibit FXGs in mature axons in the adult olfactory system. Experiments in Fmr1 null mice show that FMRP regulates axonal protein expression but is not required for axonal transport of ribosomes or its target mRNAs. Axonal translational machinery is thus a feature of adult CNS neurons. Regulation of this machinery by FMRP could support complex behaviours in humans throughout life.


Assuntos
Axônios/patologia , Encéfalo/patologia , Grânulos Citoplasmáticos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/patologia , RNA Mensageiro/metabolismo , Ribossomos/patologia , Adulto , Animais , Axônios/metabolismo , Encéfalo/metabolismo , Grânulos Citoplasmáticos/patologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neurogênese/genética , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Ribossomos/metabolismo
9.
Blood ; 128(8): 1144-51, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27389717

RESUMO

The majority of patients with Alzheimer disease (AD) suffer from impaired cerebral circulation. Accumulating evidence suggests that fibrinogen, the main protein component of blood clots, plays an important role in this circulatory dysfunction in AD. Fibrinogen interacts with ß-amyloid (Aß), forming plasmin-resistant abnormal blood clots, and increased fibrin deposition is found in the brains of AD patients and mouse models. In this study, we investigated the biochemical and structural details of the Aß-fibrinogen interaction. We identified the central region of Aß42 as the most critical region for the interaction, which can be inhibited by specific antibodies against the central region of Aß and by naturally occurring p3 peptides, Aß17-40 and Aß17-42. X-ray crystallographic analysis revealed that Aß42 binding to fragment D of fibrinogen induced a structural change in the C-terminal region of the fibrinogen ß-chain (ß384-393). Furthermore, we identified an additional Aß-binding site within the αC region of fibrinogen. Aß binding to this αC region blocked plasmin-mediated fibrin cleavage at this site, resulting in the generation of increased levels of a plasmin-resistant fibrin degradation fragment. Overall, our study elucidates the Aß-fibrinogen interaction and clarifies the mechanism by which Aß-fibrinogen binding delays fibrinolysis by plasmin. These results may facilitate the development of effective therapeutics against the Aß-fibrinogen interaction to treat cerebrovascular abnormalities in AD.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Fibrinogênio/química , Fibrinogênio/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/metabolismo , Produtos de Degradação da Fibrina e do Fibrinogênio/química , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Fibrinolisina/metabolismo , Fibrinólise , Humanos , Camundongos , Ligação Proteica , Dodecilsulfato de Sódio/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-19915727

RESUMO

The ability of the nervous system to convert transient experiences into long-lasting structural changes at the synapse relies upon protein synthesis. It has become increasingly clear that a critical subset of this synthesis occurs within the synaptic compartment. While this process has been extensively characterized in the postsynaptic compartment, the contribution of local translation to presynaptic function remains largely unexplored. However, recent evidence highlights the potential importance of translation within the presynaptic compartment. Work in cultured neurons has shown that presynaptic translation occurs specifically at synapses undergoing long-term plasticity and may contribute to the maintenance of nascent synapses. Studies from our laboratory have demonstrated that Fragile X proteins, which regulate mRNA localization and translation, are expressed at the presynaptic apparatus. Further, mRNAs encoding presynaptic proteins traffic into axons. Here we discuss recent advances in the study of presynaptic translation as well as the challenges confronting the field. Understanding the regulation of presynaptic function by local protein synthesis promises to shed new light on activity-dependent modification of synaptic architecture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...