Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMJ Open ; 12(10): e049657, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36223959

RESUMO

OBJECTIVES: The enormous toll of the COVID-19 pandemic has heightened the urgency of collecting and analysing population-scale datasets in real time to monitor and better understand the evolving pandemic. The objectives of this study were to examine the relationship of risk factors to COVID-19 susceptibility and severity and to develop risk models to accurately predict COVID-19 outcomes using rapidly obtained self-reported data. DESIGN: A cross-sectional study. SETTING: AncestryDNA customers in the USA who consented to research. PARTICIPANTS: The AncestryDNA COVID-19 Study collected self-reported survey data on symptoms, outcomes, risk factors and exposures for over 563 000 adult individuals in the USA in just under 4 months, including over 4700 COVID-19 cases as measured by a self-reported positive test. RESULTS: We replicated previously reported associations between several risk factors and COVID-19 susceptibility and severity outcomes, and additionally found that differences in known exposures accounted for many of the susceptibility associations. A notable exception was elevated susceptibility for men even after adjusting for known exposures and age (adjusted OR=1.36, 95% CI=1.19 to 1.55). We also demonstrated that self-reported data can be used to build accurate risk models to predict individualised COVID-19 susceptibility (area under the curve (AUC)=0.84) and severity outcomes including hospitalisation and critical illness (AUC=0.87 and 0.90, respectively). The risk models achieved robust discriminative performance across different age, sex and genetic ancestry groups within the study. CONCLUSIONS: The results highlight the value of self-reported epidemiological data to rapidly provide public health insights into the evolving COVID-19 pandemic.


Assuntos
COVID-19 , Adulto , COVID-19/epidemiologia , Estudos Transversais , Humanos , Masculino , Pandemias , Fatores de Risco , SARS-CoV-2
2.
Noncoding RNA ; 7(2)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925339

RESUMO

RNA silencing pathways control eukaryotic gene expression transcriptionally or posttranscriptionally in a sequence-specific manner. In RNA silencing, the production of double-stranded RNA (dsRNA) gives rise to various classes of 20-24 nucleotide (nt) small RNAs (smRNAs). In Arabidopsis thaliana, smRNAs are often derived from long dsRNA molecules synthesized by one of the six genomically encoded RNA-dependent RNA Polymerase (RDR) proteins. However, the full complement of the RDR-dependent smRNAs and functions that these proteins and their RNA-binding cofactors play in plant RNA silencing has not been fully uncovered. To address this gap, we performed a global genomic analysis of all six RDRs and two of their cofactors to find new substrates for RDRs and targets of the resulting RDR-derived siRNAs to uncover new functions for these proteins in plants. Based on these analyses, we identified substrates for the three RDRγ clade proteins (RDR3-5), which had not been well-characterized previously. We also identified new substrates for the other three RDRs (RDR1, RDR2, and RDR6) as well as the RDR2 cofactor RNA-directed DNA methylation 12 (RDM12) and the RDR6 cofactor suppressor of gene silencing 3 (SGS3). These findings revealed that the target substrates of SGS3 are not limited to those solely utilized by RDR6, but that this protein seems to be a more general cofactor for the RDR family of proteins. Additionally, we found that RDR6 and SGS3 are involved in the production of smRNAs that target transcripts related to abiotic stresses, including water deprivation, salt stress, and ABA response, and as expected the levels of these mRNAs are increased in rdr6 and sgs3 mutant plants. Correspondingly, plants that lack these proteins (rdr6 and sgs3 mutants) are hypersensitive to ABA treatment, tolerant to high levels of PEG8000, and have a higher survival rate under salt treatment in comparison to wild-type plants. In total, our analyses have provided an extremely data-rich resource for uncovering new functions of RDR-dependent RNA silencing in plants, while also revealing a previously unexplored link between the RDR6/SGS3-dependent pathway and plant abiotic stress responses.

3.
Adv Exp Med Biol ; 907: 29-59, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27256381

RESUMO

RNA molecules of all types fold into complex secondary and tertiary structures that are important for their function and regulation. Structural and catalytic RNAs such as ribosomal RNA (rRNA) and transfer RNA (tRNA) are central players in protein synthesis, and only function through their proper folding into intricate three-dimensional structures. Studies of messenger RNA (mRNA) regulation have also revealed that structural elements embedded within these RNA species are important for the proper regulation of their total level in the transcriptome. More recently, the discovery of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) has shed light on the importance of RNA structure to genome, transcriptome, and proteome regulation. Due to the relatively small number, high conservation, and importance of structural and catalytic RNAs to all life, much early work in RNA structure analysis mapped out a detailed view of these molecules. Computational and physical methods were used in concert with enzymatic and chemical structure probing to create high-resolution models of these fundamental biological molecules. However, the recent expansion in our knowledge of the importance of RNA structure to coding and regulatory RNAs has left the field in need of faster and scalable methods for high-throughput structural analysis. To address this, nuclease and chemical RNA structure probing methodologies have been adapted for genome-wide analysis. These methods have been deployed to globally characterize thousands of RNA structures in a single experiment. Here, we review these experimental methodologies for high-throughput RNA structure determination and discuss the insights gained from each approach.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Análise de Sequência de RNA/métodos , Animais , Arabidopsis/genética , Pareamento de Bases , Caenorhabditis elegans/genética , Biologia Computacional/métodos , Drosophila melanogaster/genética , Células-Tronco Embrionárias/química , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , RNA/biossíntese , RNA/genética , Dobramento de RNA , RNA Fúngico/genética , RNA de Helmintos/química , Ribonucleases/metabolismo , Especificidade por Substrato
4.
BMC Bioinformatics ; 17(1): 215, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27188311

RESUMO

BACKGROUND: RNA molecules fold into complex three-dimensional shapes, guided by the pattern of hydrogen bonding between nucleotides. This pattern of base pairing, known as RNA secondary structure, is critical to their cellular function. Recently several diverse methods have been developed to assay RNA secondary structure on a transcriptome-wide scale using high-throughput sequencing. Each approach has its own strengths and caveats, however there is no widely available tool for visualizing and comparing the results from these varied methods. METHODS: To address this, we have developed Structure Surfer, a database and visualization tool for inspecting RNA secondary structure in six transcriptome-wide data sets from human and mouse ( http://tesla.pcbi.upenn.edu/strucuturesurfer/ ). The data sets were generated using four different high-throughput sequencing based methods. Each one was analyzed with a scoring pipeline specific to its experimental design. Users of Structure Surfer have the ability to query individual loci as well as detect trends across multiple sites. RESULTS: Here, we describe the included data sets and their differences. We illustrate the database's function by examining known structural elements and we explore example use cases in which combined data is used to detect structural trends. CONCLUSIONS: In total, Structure Surfer provides an easy-to-use database and visualization interface for allowing users to interrogate the currently available transcriptome-wide RNA secondary structure information for mammals.


Assuntos
Bases de Dados Factuais , RNA/química , Transcriptoma , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Conformação de Ácido Nucleico , RNA/metabolismo , Análise de Sequência de RNA
5.
Methods ; 67(1): 64-73, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23867340

RESUMO

The advent of high-throughput sequencing has led to an explosion of studies into the diversity, expression, processing, and lifespan of RNAs. Recently, three different high-throughput sequencing-based methods have been developed to specifically study RNAs that are in the process of being degraded. All three methods-genome-wide mapping of uncapped and cleaved transcripts (GMUCT), parallel analysis of RNA ends (PARE), and degradome sequencing-take advantage of the fact that Illumina sequencing libraries use T4 RNA ligase 1 to ligate an adapter to the 5' end of RNAs that have a free 5'-monophosphate. This condition for T4 RNA ligase 1 substrates means that mature mRNAs are not substrates of the enzyme because they have a 5'-cap moiety. As a result, these sequencing libraries are specifically made up of clones of decapped or degrading mRNAs resulting from 5'-to-3' or nonsense-mediated decay (NMD) and the 3' fragment of cleaved microRNA (miRNA) and small interfering RNA (siRNA) target RNAs. Here, we present a massively streamlined protocol for GMUCT that takes 2-3days, can be initiated with as little as 5µg of starting total RNA, and involves only one gel size-selection step. We show that the resulting datasets are similar to those produced using the previous GMUCT and PARE protocols. In total, our results suggest that this method will be the preferable approach for future studies of RNA degradation intermediates and small RNA-mediated cleavage in eukaryotic transcriptomes.


Assuntos
Mapeamento Cromossômico/métodos , RNA Mensageiro/genética , Animais , Arabidopsis/genética , Linhagem Celular , Biblioteca Gênica , Genoma , Humanos , Poliadenilação , RNA Mensageiro/isolamento & purificação , RNA Mensageiro/metabolismo
6.
Proc Natl Acad Sci U S A ; 103(13): 5102-7, 2006 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-16549792

RESUMO

We have developed a vaccine strategy for generating an attenuated strain of an intracellular bacterial pathogen that, after uptake by professional antigen-presenting cells, does not replicate intracellularly and is readily killed. However, after degradation of the vaccine strain within the phagolysosome, target antigens are released into the cytosol for endogenous processing and presentation for stimulation of CD8(+) effector T cells. Applying this strategy to the model intracellular pathogen Listeria monocytogenes, we show that an intracellular replication-deficient vaccine strain is cleared rapidly in normal and immunocompromised animals, yet antigen-specific CD8(+) effector T cells are stimulated after immunization. Furthermore, animals immunized with the intracellular replication-deficient vaccine strain are resistant to lethal challenge with a virulent WT strain of L. monocytogenes. These studies suggest a general strategy for developing safe and effective, attenuated intracellular replication-deficient vaccine strains for stimulation of protective immune responses against intracellular bacterial pathogens.


Assuntos
Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/administração & dosagem , Toxinas Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Proteínas de Choque Térmico/administração & dosagem , Proteínas de Choque Térmico/imunologia , Listeria monocytogenes/genética , Listeria monocytogenes/imunologia , Animais , Antígenos de Bactérias/genética , Toxinas Bacterianas/genética , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Linhagem Celular , Citoplasma/metabolismo , Feminino , Proteínas de Choque Térmico/genética , Proteínas Hemolisinas , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Listeriose/imunologia , Listeriose/metabolismo , Listeriose/microbiologia , Listeriose/patologia , Camundongos , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...