Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(5)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153787

RESUMO

Metastasized colorectal cancer (CRC) is associated with a poor prognosis and rapid disease progression. Besides hepatic metastasis, peritoneal carcinomatosis is the major cause of death in Union for International Cancer Control (UICC) stage IV CRC patients. Insights into differential site-specific reconstitution of tumor cells and the corresponding tumor microenvironment are still missing. Here, we analyzed the transcriptome of single cells derived from murine multivisceral CRC and delineated the intermetastatic cellular heterogeneity regarding tumor epithelium, stroma, and immune cells. Interestingly, we found an intercellular site-specific network of cancer-associated fibroblasts and tumor epithelium during peritoneal metastasis as well as an autologous feed-forward loop in cancer stem cells. We furthermore deciphered a metastatic dysfunctional adaptive immunity by a loss of B cell-dependent antigen presentation and consecutive effector T cell exhaustion. Furthermore, we demonstrated major similarities of this murine metastatic CRC model with human disease and - based on the results of our analysis - provided an auspicious site-specific immunomodulatory treatment approach for stage IV CRC by intraperitoneal checkpoint inhibition.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias do Colo , Neoplasias Colorretais , Segunda Neoplasia Primária , Humanos , Animais , Camundongos , Neoplasias Colorretais/genética , Imunidade Adaptativa , Apresentação de Antígeno , Microambiente Tumoral/genética
2.
Sci Signal ; 16(768): eabh1083, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36649377

RESUMO

Inflammasomes are intracellular protein complexes that promote an inflammatory host defense in response to pathogens and damaged or neoplastic tissues and are implicated in inflammatory disorders and therapeutic-induced toxicity. We investigated the mechanisms of activation for inflammasomes nucleated by NOD-like receptor (NLR) protiens. A screen of a small-molecule library revealed that several tyrosine kinase inhibitors (TKIs)-including those that are clinically approved (such as imatinib and crizotinib) or are in clinical trials (such as masitinib)-activated the NLRP3 inflammasome. Furthermore, imatinib and masitinib caused lysosomal swelling and damage independently of their kinase target, leading to cathepsin-mediated destabilization of myeloid cell membranes and, ultimately, cell lysis that was accompanied by potassium (K+) efflux, which activated NLRP3. This effect was specific to primary myeloid cells (such as peripheral blood mononuclear cells and mouse bone marrow-derived dendritic cells) and did not occur in other primary cell types or various cell lines. TKI-induced lytic cell death and NLRP3 activation, but not lysosomal damage, were prevented by stabilizing cell membranes. Our findings reveal a potential immunological off-target of some TKIs that may contribute to their clinical efficacy or to their adverse effects.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mesilato de Imatinib , Leucócitos Mononucleares/metabolismo , Morte Celular , Células Mieloides/metabolismo , Interleucina-1beta/metabolismo
3.
Front Immunol ; 13: 908449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844581

RESUMO

More than half of all patients with colorectal cancer (CRC) develop distant metastasis and, depending on the local stage of the primary tumor, up to 48% of patients present peritoneal carcinomatosis (PC). PC is often considered as a widespread metastatic disease, which is almost resistant to current systemic therapies like chemotherapeutic and immunotherapeutic regimens. Here we could show that tumor cells of PC besides being senescent also exhibit stem cell features. To investigate these surprising findings in more detail, we established a murine model based on tumor organoids that resembles the clinical setting. In this murine orthotopic transplantation model for peritoneal carcinomatosis, we could show that the metastatic site in the peritoneum is responsible for senescence and stemness induction in tumor cells and that induction of senescence is not due to oncogene activation or therapy. In both mouse and human PC, senescence is associated with a senescence-associated secretory phenotype (SASP) influencing the tumor microenvironment (TME) of PC. SASP factors are able to induce a senescence phenotype in neighbouring cells. Here we could show that SASP leads to enhanced immunosenescence in the TME of PC. Our results provide a new immunoescape mechanism in PC explaining the resistance of PC to known chemo- and immunotherapeutic approaches. Therefore, senolytic approaches may represent a novel roadmap to target this terminal stage of CRC.


Assuntos
Imunossenescência , Neoplasias Peritoneais , Animais , Humanos , Camundongos , Peritônio/patologia , Fenótipo , Microambiente Tumoral
4.
Cancer Res ; 82(2): 210-220, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34737213

RESUMO

Colorectal cancer is among the leading causes of cancer-associated deaths worldwide. Treatment failure and tumor recurrence due to survival of therapy-resistant cancer stem/initiating cells represent major clinical issues to overcome. In this study, we identified lysine methyltransferase 9 (KMT9), an obligate heterodimer composed of KMT9α and KMT9ß that monomethylates histone H4 at lysine 12 (H4K12me1), as an important regulator in colorectal tumorigenesis. KMT9α and KMT9ß were overexpressed in colorectal cancer and colocalized with H4K12me1 at promoters of target genes involved in the regulation of proliferation. Ablation of KMT9α drastically reduced colorectal tumorigenesis in mice and prevented the growth of murine as well as human patient-derived tumor organoids. Moreover, loss of KMT9α impaired the maintenance and function of colorectal cancer stem/initiating cells and induced apoptosis specifically in this cellular compartment. Together, these data suggest that KMT9 is an important regulator of colorectal carcinogenesis, identifying KMT9 as a promising therapeutic target for the treatment of colorectal cancer. SIGNIFICANCE: The H4K12 methyltransferase KMT9 regulates tumor cell proliferation and stemness in colorectal cancer, indicating that targeting KMT9 could be a useful approach for preventing and treating this disease.


Assuntos
Carcinogênese/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/genética , Estudos de Casos e Controles , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Organoides/metabolismo , Multimerização Proteica , RNA Mensageiro/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/química
5.
Cells ; 12(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36611932

RESUMO

Colorectal cancer (CRC) is one of the most frequent tumor entities worldwide with only limited therapeutic options. CRC is not only a genetic disease with several mutations in specific oncogenes and/or tumor suppressor genes such as APC, KRAS, PIC3CA, BRAF, SMAD4 or TP53 but also a multifactorial disease including environmental factors. Cancer cells communicate with their environment mostly via soluble factors such as cytokines, chemokines or growth factors to generate a favorable tumor microenvironment (TME). The TME, a heterogeneous population of differentiated and progenitor cells, plays a critical role in regulating tumor development, growth, invasion, metastasis and therapy resistance. In this context, cytokines from cancer cells and cells of the TME influence each other, eliciting an inflammatory milieu that can either enhance or suppress tumor growth and metastasis. Additionally, several lines of evidence exist that the composition of the microbiota regulates inflammatory processes, controlled by cytokine secretion, that play a role in carcinogenesis and tumor progression. In this review, we discuss the cytokine networks between cancer cells and the TME and microbiome in colorectal cancer and the related treatment strategies, with the goal to discuss cytokine-mediated strategies that could overcome the common therapeutic resistance of CRC tumors.


Assuntos
Neoplasias Colorretais , Citocinas , Humanos , Citocinas/genética , Neoplasias Colorretais/patologia , Oncogenes , Mutação , Quimiocinas/genética , Microambiente Tumoral
7.
Nat Med ; 21(11): 1298-306, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26479924

RESUMO

In heart failure therapy, it is generally assumed that attempts to produce a long-term increase in cardiac contractile force are almost always accompanied by structural and functional damage. Here we show that modest overexpression of the Raf kinase inhibitor protein (RKIP), encoded by Pebp1 in mice, produces a well-tolerated, persistent increase in cardiac contractility that is mediated by the ß1-adrenoceptor (ß1AR). This result is unexpected, as ß1AR activation, a major driver of cardiac contractility, usually has long-term adverse effects. RKIP overexpression achieves this tolerance via simultaneous activation of the ß2AR subtype. Analogously, RKIP deficiency exaggerates pressure overload-induced cardiac failure. We find that RKIP expression is upregulated in mouse and human heart failure, indicative of an adaptive role for RKIP. Pebp1 gene transfer in a mouse model of heart failure has beneficial effects, suggesting a new therapeutic strategy for heart failure therapy.


Assuntos
Insuficiência Cardíaca/genética , Contração Miocárdica/genética , Miócitos Cardíacos/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/genética , Receptores Adrenérgicos beta 1/metabolismo , Animais , Imunoprecipitação da Cromatina , Eletroforese em Gel Bidimensional , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Técnicas de Transferência de Genes , Insuficiência Cardíaca/metabolismo , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Transgênicos , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...