RESUMO
Hurricane Maria made landfall in Puerto Rico on September 20, 2017, causing major damage to infrastructure and severely limiting access to potable water, electric power, transportation, and communications. Public services that were affected included operations of the Puerto Rico Department of Health (PRDOH), which provides critical laboratory testing and surveillance for diseases and other health hazards. PRDOH requested assistance from CDC for the restoration of laboratory infrastructure, surveillance capacity, and diagnostic testing for selected priority diseases, including influenza, rabies, leptospirosis, salmonellosis, and tuberculosis. PRDOH, CDC, and the Association of Public Health Laboratories (APHL) collaborated to conduct rapid needs assessments and, with assistance from the CDC Foundation, implement a temporary transport system for shipping samples from Puerto Rico to the continental United States for surveillance and diagnostic and confirmatory testing. This report describes the initial laboratory emergency response and engagement efforts among federal, state, and nongovernmental partners to reestablish public health laboratory services severely affected by Hurricane Maria. The implementation of a sample transport system allowed Puerto Rico to reinitiate priority infectious disease surveillance and laboratory testing for patient and public health interventions, while awaiting the rebuilding and reinstatement of PRDOH laboratory services.
Assuntos
Tempestades Ciclônicas , Desastres , Laboratórios/organização & administração , Prática de Saúde Pública , Centers for Disease Control and Prevention, U.S. , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/epidemiologia , Testes Diagnósticos de Rotina , Humanos , Vigilância da População , Porto Rico/epidemiologia , Estados UnidosRESUMO
BACKGROUND: From January 2014-July 2014, more than 46 000 unaccompanied children (UC) from Central America crossed the US-Mexico border. In June-July, UC aged 9-17 years in 4 shelters and 1 processing center in 4 states were hospitalized with acute respiratory illness. We conducted a multistate investigation to interrupt disease transmission. METHODS: Medical charts were abstracted for hospitalized UC. Nonhospitalized UC with influenza-like illness were interviewed, and nasopharyngeal and oropharyngeal swabs were collected to detect respiratory pathogens. Nasopharyngeal swabs were used to assess pneumococcal colonization in symptomatic and asymptomatic UC. Pneumococcal blood isolates from hospitalized UC and nasopharyngeal isolates were characterized by serotyping and whole-genome sequencing. RESULTS: Among 15 hospitalized UC, 4 (44%) of 9 tested positive for influenza viruses, and 6 (43%) of 14 with blood cultures grew pneumococcus, all serotype 5. Among 48 nonhospitalized children with influenza-like illness, 1 or more respiratory pathogens were identified in 46 (96%). Among 774 nonhospitalized UC, 185 (24%) yielded pneumococcus, and 70 (38%) were serotype 5. UC transferring through the processing center were more likely to be colonized with serotype 5 (odds ratio, 3.8; 95% confidence interval, 2.1-6.9). Analysis of core pneumococcal genomes detected 2 related, yet independent, clusters. No pneumococcus cases were reported after pneumococcal and influenza immunization campaigns. CONCLUSIONS: This respiratory disease outbreak was due to multiple pathogens, including Streptococcus pneumoniae serotype 5 and influenza viruses. Pneumococcal and influenza vaccinations prevented further transmission. Future efforts to prevent similar outbreaks will benefit from use of both vaccines.