Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocr Relat Cancer ; 29(1): 15-31, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34636746

RESUMO

Castration-resistant prostate cancer (CRPC) remains highly lethal and in need of novel, actionable therapeutic targets. The pioneer factor GATA2 is a significant prostate cancer (PC) driver and is linked to poor prognosis. GATA2 directly promotes androgen receptor (AR) gene expression (both full-length and splice-variant) and facilitates AR binding to chromatin, recruitment of coregulators, and target gene transcription. Unfortunately, there is no clinically applicable GATA2 inhibitor available at the moment. Using a bioinformatics algorithm, we screened in silico 2650 clinically relevant drugs for a potential GATA2 inhibitor. Validation studies used cytotoxicity and proliferation assays, global gene expression analysis, RT-qPCR, reporter assay, reverse phase protein array analysis (RPPA), and immunoblotting. We examined target engagement via cellular thermal shift assay (CETSA), ChIP-qPCR, and GATA2 DNA-binding assay. We identified the vasodilator dilazep as a potential GATA2 inhibitor and confirmed on-target activity via CETSA. Dilazep exerted anticancer activity across a broad panel of GATA2-dependent PC cell lines in vitro and in a PDX model in vivo. Dilazep inhibited GATA2 recruitment to chromatin and suppressed the cell-cycle program, transcriptional programs driven by GATA2, AR, and c-MYC, and the expression of several oncogenic drivers, including AR, c-MYC, FOXM1, CENPF, EZH2, UBE2C, and RRM2, as well as of several mediators of metastasis, DNA damage repair, and stemness. In conclusion, we provide, via an extensive compendium of methodologies, proof-of-principle that a small molecule can inhibit GATA2 function and suppress its downstream AR, c-MYC, and other PC-driving effectors. We propose GATA2 as a therapeutic target in CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Linhagem Celular Tumoral , Cromatina , Dilazep/uso terapêutico , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Oncogenes , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/metabolismo
2.
JCI Insight ; 5(14)2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32544090

RESUMO

During the growth of lymphatic vessels (lymphangiogenesis), lymphatic endothelial cells (LECs) at the growing front sprout by forming filopodia. Those tip cells are not exposed to circulating lymph, as they are not lumenized. In contrast, LECs that trail the growing front are exposed to shear stress, become quiescent, and remodel into stable vessels. The mechanisms that coordinate the opposed activities of lymphatic sprouting and maturation remain poorly understood. Here, we show that the canonical tip cell marker Delta-like 4 (DLL4) promotes sprouting lymphangiogenesis by enhancing VEGF-C/VEGF receptor 3 (VEGFR3) signaling. However, in lumenized lymphatic vessels, laminar shear stress (LSS) inhibits the expression of DLL4, as well as additional tip cell markers. Paradoxically, LSS also upregulates VEGF-C/VEGFR3 signaling in LECs, but sphingosine 1-phosphate receptor 1 (S1PR1) activity antagonizes LSS-mediated VEGF-C signaling to promote lymphatic vascular quiescence. Correspondingly, S1pr1 loss in LECs induced lymphatic vascular hypersprouting and hyperbranching, which could be rescued by reducing Vegfr3 gene dosage in vivo. In addition, S1PR1 regulates lymphatic vessel maturation by inhibiting RhoA activity to promote membrane localization of the tight junction molecule claudin-5. Our findings suggest a potentially new paradigm in which LSS induces quiescence and promotes the survival of LECs by downregulating DLL4 and enhancing VEGF-C signaling, respectively. S1PR1 dampens LSS/VEGF-C signaling, thereby preventing sprouting from quiescent lymphatic vessels. These results also highlight the distinct roles that S1PR1 and DLL4 play in LECs when compared with their known roles in the blood vasculature.


Assuntos
Linfangiogênese/genética , Receptores de Esfingosina-1-Fosfato/genética , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Linhagem Celular , Proliferação de Células , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Proteínas de Membrana/genética , Camundongos , Pseudópodes/genética , Pseudópodes/metabolismo , Transdução de Sinais , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...