Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 236: 107572, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37121212

RESUMO

The issue of room ventilation has recently gained momentum due to the COVID-19 pandemic. Ventilation is in fact of particular relevance in educational environments. Smart University platforms, today widespread, are a good starting point to offer control services of different relevant indicators in universities. This study advances a Ventilation Quality Certificate (VQC) for Smart Universities. The certificate informs the university community of the ventilation status of its buildings and premises. It also supports senior management's decision-making, because it allows assessing preventive measures and actions taken. The VQC algorithm models the adequacy of classroom ventilation according to the number of persons present. The input used is the organisation's existing data relating to CO2 concentration and number of room occupants. AI techniques, specifically Artificial Neural Networks (ANN), were employed to determine the relationship between the different data sources included. A prototype of value-added services was developed for the Smart University platform of the University of Alicante, which allowed to implement the resulting models, together with the VQC. The prototype is currently being replicated in other universities. The case study allowed us to validate the VQC, demonstrating both its usefulness and the advantage of using pre-existing university services and resources.


Assuntos
COVID-19 , Humanos , Inteligência Artificial , Universidades , Pandemias/prevenção & controle , Respiração
2.
Comput Biol Med ; 99: 107-122, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29908394

RESUMO

This article presents the design of a field programmable gate array (FPGA)-based prototype of a system on chip (SoC) capable of behaving as one of the nerve centres comprising the neuroregulatory system in humans: the cortical-diencephalic nerve centre. The neuroregulatory system is a complex nerve system consisting of a heterogeneous group of nerve centres. These centres are distributed throughout the length of the spinal cord, are autonomous, communicate via interneurons, and govern and regulate the behaviour of multiple organs and systems in the human body. As a result of years of study of the functioning and composition of the neuroregulatory system of the lower urinary tract (LUT), the centres that regulate this system have been isolated. The objective of this study is to understand the individual functioning of each centre in order to create a general model of the neuroregulatory system that is capable of operating at the level of the actual nerve centre. This model represents an advancement of the current black box models that do not allow for isolated or independent treatment of system dysfunction. In this study, we re-visit our research into the viability of the hardware design of one of these centres-the cortical-diencephalic centre. We describe this hardware because functioning of the centre is completely configurable and programmable, which validates the design for other centres that comprise the neuroregulatory system. In this document, we succinctly present the formal model of the centre, propose a hardware design and an FPGA-based prototype, construct a testing and simulation environment to evaluate it and, lastly, analyse and contrast the results using data obtained from real patients, verifying that the functional behaviour fits that observed in humans.


Assuntos
Algoritmos , Córtex Cerebral/fisiologia , Simulação por Computador , Diencéfalo/fisiologia , Modelos Neurológicos , Bexiga Urinária , Humanos , Bexiga Urinária/inervação , Bexiga Urinária/fisiologia
3.
Comput Biol Med ; 77: 156-72, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27552074

RESUMO

The neuroregulator system in humans controls organ and system functioning. This system comprises a set of neural centres that are distributed along the spinal cord and act independently together with their nerve interconnections. The centres involved in this task were isolated in previous studies through investigations of the functioning and composition of the neuroregulator system of the lower urinary tract to elucidate their individual performances and enable the creation of a general neuroregulator system model capable of operating at the neuronal level. Although the long-term goal of our research is the development of a system on chip (SoC) capable of behaving as a fully programmable neuroregulator system, this work is another step in which we test the viability of the hardware design of one of these neuroregulator centres (specifically the cortical-diencephalic centre) to achieve a first prototype and architectural proposal. To this end, the behaviour of this centre has been isolated, a hardware design implemented on FPGA has been proposed to create a prototype, a simulation environment has been built for the evaluation, and finally, the results have been analysed. This system verified that the functional behaviour corresponded to the expected behaviour in humans and that the operational requirements for the implementation were technically and architecturally viable.


Assuntos
Modelos Neurológicos , Vias Neurais/fisiologia , Sistema Urinário/inervação , Biologia Computacional , Simulação por Computador , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA