Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37760214

RESUMO

The presence of Salmonella in pig feces is a major source of abattoir and carcass contamination, and one of the main sources of human salmonellosis. This study assessed whether using a form of esterified formic acid (30% formic acid) in drinking water (10 kg/1000 L) 5 days before slaughter could be a helpful strategy to mitigate this public health issue. Thus, 240 pigs from three Salmonella-positive commercial fattening farms were selected. From each farm, 40 pigs were allocated to a control group (CG) and 40 to a treatment group (TG). At the abattoir, fecal samples from both groups were collected for Salmonella detection (ISO 6579-1:2017) and quantification (ISO/TS 6579-2:2012). Salmonella was present in 35% (95% IC = 29.24-41.23) of the samples collected. The prevalence was significantly higher in the CG than in the TG (50% vs. 20%; p < 0.001). In all farms, the TG showed a lower percentage of shedders than the CG. A random-effects logistic model showed that the odds of shedding Salmonella were 5.63 times higher (95% CI = 2.92-10.8) for the CG than for the TG. Thus, the proportion of pigs shedding Salmonella that was prevented in the TG due to the use of this form of organic acid was 82.2%. In addition, a Chi-squared analysis for trends showed that the higher the Salmonella count, the higher the odds of the sample belonging to the CG. These results suggest that adding this type of acid to drinking water 5 days before slaughter could reduce the proportion of Salmonella-shedding pigs and the Salmonella loads in the guts of shedder pigs.

2.
Front Microbiol ; 14: 1232490, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680527

RESUMO

Salmonellosis continues to be a major cause of foodborne outbreaks worldwide, and pigs are one of the main sources of human infection. Salmonella pork contamination is a major concern for abattoirs and is related to the presence of Salmonella in pigs' feces at slaughter. Being able to predict the risk of Salmonella shedding in pigs arriving at the slaughterhouse could help mitigate abattoir and carcass contamination. For this purpose, 30 batches of 50 pigs each were selected from 30 different fattening units. The pigs were tagged and bled for the detection of antibodies against Salmonella approximately one month before slaughter. Pooled floor fecal samples were also collected from 10 pens per unit for Salmonella detection, and a questionnaire on biosecurity was administered to each farm. At the abattoir, colon content was collected from each tagged pig for the Salmonella shedding assessment. A predictive model for Salmonella shedding at slaughter was built with two-third of the pigs by employing random-effects logistic regression analysis, with Salmonella shedding as the dependent variable and pig serology and other farm/environmental characteristics as the independent variables. The model included farm as the grouping factor. Data from the remaining one-third of the pigs were used for model validation. Out of 1,500 pigs initially selected, 1,341 were identified at the abattoir and analyzed. Salmonella was detected in 13 (43.3%; 95%CI = 27.4-60.8) of the fattening units. The mean batch seroprevalence (cut-off OD% ≥40) among the fattening units was 31.7% (95%CI = 21.8-41.0), and a total of 316 pigs (23.6%; 95%CI = 21.4-25.9) shed Salmonella at slaughter. The model predicted reasonably well (Area under the curve = 0.76; P < 0.05) whether a pig would shed Salmonella at slaughter, with estimates of sensitivity and specificity at 71.6% and 73.6%, respectively. Serology, the percentage of Salmonella-positive pens on the farm, and the internal biosecurity score were significantly associated (P < 0.05) with Salmonella shedding at the abattoir, and several scenarios were observed by the model. The study highlighted that although serology may be helpful for identifying batches of pigs at risk of shedding Salmonella upon their arrival at the abattoir, it may not be necessary in some scenarios.

3.
Animals (Basel) ; 12(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35804519

RESUMO

Pigs shedding Salmonella at slaughter are considered a source of carcass contamination and human infection. To assess this potential risk, the proportion of Salmonella shedders that arrive for slaughter was evaluated in a population of 1068 pigs from 24 farms. Shedding was present in 27.3% of the pigs, and the monophasic variant of Salmonella Typhimurium, an emerging zoonotic serotype, was the most prevalent (46.9%). Antimicrobial resistance (AMR) in Salmonella isolates was common, but few isolates showed AMR to antimicrobials of critical importance for humans such as third-generation cephalosporins (5%), colistin (0%), or carbapenems (0%). However, AMR to tigecycline was moderately high (15%). The efficacy of an esterified formic acid in the lairage drinking water (3 kg formic acid/1000 L) was also assessed as a potential abattoir-based strategy to reduce Salmonella shedding. It was able to reduce the proportion of shedders (60.7% in the control group (CG) vs. 44.3% in the treatment group (TG); p < 0.01). After considering clustering and confounding factors, the odds of shedding Salmonella in the CG were 2.75 (95% CI = 1.80−4.21) times higher than those of the TG, suggesting a potential efficacy of reduction in shedding as high as 63.6%. This strategy may contribute to mitigating the burden of abattoir environmental contamination.

4.
Animals (Basel) ; 11(7)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34359264

RESUMO

The study assessed changes in the gut microbiota of pigs after dietary supplementation with protected sodium butyrate (PSB) during the growing-fattening period (≈90 days). One gram of colon content from 18 pigs (9 from the treatment group -TG- and 9 from the control group -CG-) was collected. Bacterial DNA was extracted and 16S rRNA high-throughput amplicon sequencing used to assess microbiota changes between groups. The groups shared 75.4% of the 4697 operational taxonomic units identified. No differences in alpha diversity were found, but significant differences for some specific taxa were detected between groups. The low-represented phylum Deinococcus-Thermus, which is associated with the production of carotenoids with antioxidant, anti-apoptotic, and anti-inflammatory properties, was increased in the TG (p = 0.032). Prevotellaceae, Lachnospiraceae, Peptostreptococcaceae, Peptococcaceae, and Terrisporobacter were increased in the TG. Members of these families have the ability to ferment complex dietary polysaccharides and produce larger amounts of short chain fatty acids. Regarding species, only Clostridium butyricum was increased in the TG (p = 0.048). Clostridium butyricum is well-known as probiotic in humans, but it has also been associated with overall positive gut effects (increased villus height, improved body weight, reduction of diarrhea, etc.) in weanling pigs. Although the use of PSB did not modify the overall richness of microbiota composition of these slaughter pigs, it may have increased specific taxa associated with better gut health parameters.

5.
Pathogens ; 10(2)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504097

RESUMO

Few studies have focused on assessing Salmonella infection in the nursery and its role in further pig production periods. Mesenteric lymph nodes, intestinal content, and meat juice from 389 6-week-old male piglets intended for human consumption from five breeding farms and 191 pooled floor fecal samples from gilt development units (GDU) from the same farms were analyzed to estimate and characterize (by pulsed-field gel electrophoresis and antimicrobial resistance analyses) Salmonella infection. The prevalence of infection and shedding among piglets was 36.5% and 37.3%, respectively, shedding being significantly associated with infection (Odds Ratio = 12.7; CI 7.3-22.0). Salmonella Rissen; S. 4,[5],12:i:-; and S. Derby were the most common serotypes. A low level of Salmonella-specific maternal antibodies at the beginning of the nursery period suggested it was a period of high risk of infection. Resistance to 3rd- and 4th-generation cephalosporins was detected in piglet isolates although the piglets never received antibiotics, indicating they could be vectors of antimicrobial resistance. The same Salmonella clones were detected in piglet and GDU isolates, suggesting that infected piglets play a significant role in the infection of gilts and consequently of finishing pigs in the case of production farms. The control of Salmonella infection in nursery piglets may decrease the risk of abattoir and carcass contamination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...