Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Proc Natl Acad Sci U S A ; 120(44): e2310600120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871207

RESUMO

Light perception for orientation in zoospore-forming fungi is linked to homo- or heterodimeric rhodopsin-guanylyl cyclases (RGCs). Heterodimeric RGCs, first identified in the chytrid Rhizoclosmatium globosum, consist of an unusual near-infrared absorbing highly fluorescent sensitizer neorhodopsin (NeoR) that is paired with a visual light-absorbing rhodopsin responsible for enzyme activation. Here, we present a comprehensive analysis of the distribution of RGC genes in early-branching fungi using currently available genetic data. Among the characterized RGCs, we identified red-sensitive homodimeric RGC variants with maximal light activation close to 600 nm, which allow for red-light control of GTP to cGMP conversion in mammalian cells. Heterodimeric RGC complexes have evolved due to a single gene duplication within the branching of Chytridiales and show a spectral range for maximal light activation between 480 to 600 nm. In contrast, the spectral sensitivity of NeoRs is reaching into the near-infrared range with maximal absorption between 641 and 721 nm, setting the low energy spectral edge of rhodopsins so far. Based on natural NeoR variants and mutational studies, we reevaluated the role of the counterion-triad proposed to cause the extreme redshift. With the help of chimera constructs, we disclose that the cyclase domain is crucial for functioning as homo- or heterodimers, which enables the adaptation of the spectral sensitivity by modular exchange of the photosensor. The extreme spectral plasticity of retinal chromophores in native photoreceptors provides broad perspectives on the achievable spectral adaptation for rhodopsin-based molecular tools ranging from UVB into the near-infrared.


Assuntos
Retina , Rodopsina , Animais , Rodopsina/genética , Células Fotorreceptoras , Luz , Guanilato Ciclase/genética , Mamíferos
3.
Nat Commun ; 11(1): 5682, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173168

RESUMO

The Rhizoclosmatium globosum genome encodes three rhodopsin-guanylyl cyclases (RGCs), which are predicted to facilitate visual orientation of the fungal zoospores. Here, we show that RGC1 and RGC2 function as light-activated cyclases only upon heterodimerization with RGC3 (NeoR). RGC1/2 utilize conventional green or blue-light-sensitive rhodopsins (λmax = 550 and 480 nm, respectively), with short-lived signaling states, responsible for light-activation of the enzyme. The bistable NeoR is photoswitchable between a near-infrared-sensitive (NIR, λmax = 690 nm) highly fluorescent state (QF = 0.2) and a UV-sensitive non-fluorescent state, thereby modulating the activity by NIR pre-illumination. No other rhodopsin has been reported so far to be functional as a heterooligomer, or as having such a long wavelength absorption or high fluorescence yield. Site-specific mutagenesis and hybrid quantum mechanics/molecular mechanics simulations support the idea that the unusual photochemical properties result from the rigidity of the retinal chromophore and a unique counterion triad composed of two glutamic and one aspartic acids. These findings substantially expand our understanding of the natural potential and limitations of spectral tuning in rhodopsin photoreceptors.


Assuntos
Quitridiomicetos/genética , Rodopsina , Biologia Computacional , Fluorescência , Corantes Fluorescentes/química , Corantes Fluorescentes/isolamento & purificação , Genes Fúngicos , Genoma Fúngico , Mutagênese Sítio-Dirigida , Processos Fotoquímicos , Células Fotorreceptoras/fisiologia , Rodopsina/biossíntese , Rodopsina/química , Rodopsina/genética
4.
Nat Commun ; 9(1): 4611, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397200

RESUMO

Optogenetics enables manipulation of biological processes with light at high spatio-temporal resolution to control the behavior of cells, networks, or even whole animals. In contrast to the performance of excitatory rhodopsins, the effectiveness of inhibitory optogenetic tools is still insufficient. Here we report a two-component optical silencer system comprising photoactivated adenylyl cyclases (PACs) and the small cyclic nucleotide-gated potassium channel SthK. Activation of this 'PAC-K' silencer by brief pulses of low-intensity blue light causes robust and reversible silencing of cardiomyocyte excitation and neuronal firing. In vivo expression of PAC-K in mouse and zebrafish neurons is well tolerated, where blue light inhibits neuronal activity and blocks motor responses. In combination with red-light absorbing channelrhodopsins, the distinct action spectra of PACs allow independent bimodal control of neuronal activity. PAC-K represents a reliable optogenetic silencer with intrinsic amplification for sustained potassium-mediated hyperpolarization, conferring high operational light sensitivity to the cells of interest.


Assuntos
Optogenética/métodos , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio/efeitos da radiação , Elementos Silenciadores Transcricionais , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Adenilil Ciclases/efeitos da radiação , Animais , Animais Geneticamente Modificados , Channelrhodopsins/efeitos da radiação , Expressão Gênica/genética , Expressão Gênica/efeitos da radiação , Células HEK293 , Humanos , Luz , Camundongos , Modelos Animais , Miócitos Cardíacos/metabolismo , Neurônios/metabolismo , Neurônios/efeitos da radiação , Rodopsina/farmacologia , Peixe-Zebra
5.
Sci Rep ; 8(1): 9316, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915394

RESUMO

A new microbial rhodopsin class that actively transports sodium out of the cell upon illumination was described in 2013. However, poor membrane targeting of the first-identified sodium pump KR2 in mammalian cells has hindered the direct electrical investigation of its transport mechanism and optogenetic application to date. Accordingly, we designed enhanced KR2 (eKR2), which exhibits improved membrane targeting and higher photocurrents in mammalian cells to facilitate molecular characterization and future optogenetic applications. Our selectivity measurements revealed that stationary photocurrents are primarily carried by sodium, whereas protons only play a minor role, if any. Combining laser-induced photocurrent and absorption measurements, we found that spectral changes were not necessarily related to changes in transport activity. Finally, we showed that eKR2 can be expressed in cultured hippocampal mouse neurons and induce reversible inhibition of action potential firing with millisecond precision upon illumination with moderate green-light. Hence, the light-driven sodium pump eKR2 is a reliable inhibitory optogenetic tool applicable to situations in which the proton and chloride gradients should not be altered.


Assuntos
Eletricidade , Luz , Optogenética , Engenharia de Proteínas , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Células Cultivadas , Hipocampo/citologia , Humanos , Espaço Intracelular/metabolismo , Íons , Cinética , Potenciais da Membrana , Camundongos , Neurônios/metabolismo , Fotólise , Proteínas Recombinantes/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/química , Especificidade por Substrato , Xenopus
6.
Neuropharmacology ; 94: 80-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25528740

RESUMO

It is well established that some members of the Deg/ENaC super family of amiloride sensitive ion channels can participate directly in the transduction of mechanical stimuli by sensory neurons in invertebrates. A large body of work has also implicated the acid sensing ion channels family (ASIC1-4) as participants in regulating mechanoreceptor sensitivity in vertebrates. In this review we provide an overview of the physiological and genetic evidence for involvement of ASICs in mechanosensory function. On balance, the available evidence favors the idea that these channels have an important regulatory role in mechanosensory function. It is striking how diverse the consequences of Asic gene deletion are on mechanosensory function with both gain and loss of function effects being observed depending on sensory neuron type. We conclude that other, as yet unknown, molecular partners of ASIC proteins may be decisive in determining their precise physiological role in mechanosensory neurons. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Mecanorreceptores/metabolismo , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA