Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(D1): D1353-D1359, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36399499

RESUMO

The Open Targets Platform (https://platform.opentargets.org/) is an open source resource to systematically assist drug target identification and prioritisation using publicly available data. Since our last update, we have reimagined, redesigned, and rebuilt the Platform in order to streamline data integration and harmonisation, expand the ways in which users can explore the data, and improve the user experience. The gene-disease causal evidence has been enhanced and expanded to better capture disease causality across rare, common, and somatic diseases. For target and drug annotations, we have incorporated new features that help assess target safety and tractability, including genetic constraint, PROTACtability assessments, and AlphaFold structure predictions. We have also introduced new machine learning applications for knowledge extraction from the published literature, clinical trial information, and drug labels. The new technologies and frameworks introduced since the last update will ease the introduction of new features and the creation of separate instances of the Platform adapted to user requirements. Our new Community forum, expanded training materials, and outreach programme support our users in a range of use cases.

2.
Bioinformatics ; 37(20): 3693-3694, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33830216

RESUMO

MOTIVATION: Curation is essential for any data platform to maintain the quality of the data it provides. Today, more effective curation tools are often vital to keep up with the rapid growth of existing, maintenance-requiring databases and the amount of newly published information that needs to be surveyed. However, curation interfaces are often complex and challenging to be further developed. Therefore, opportunities for experimentation with curation workflows may be lost due to a lack of development resources or a reluctance to change sensitive production systems. RESULTS: We propose a decoupled, modular and scriptable architecture to build new curation tools on top of existing platforms. Our architecture treats the existing platform as a black box. It, therefore, only relies on its public application programming interfaces and web application instead of requiring any changes to the existing infrastructure. As a case study, we have implemented this architecture in cmd-iaso, a curation tool for the identifiers.org registry. With cmd-iaso, we also show that the proposed design's flexibility can be utilized to streamline and enhance the curator's workflow with the platform's existing web interface. AVAILABILITYAND IMPLEMENTATION: The cmd-iaso curation tool is implemented in Python 3.7+ and supports Linux, macOS and Windows. Its source code and documentation are freely available from https://github.com/identifiers-org/cmd-iaso. It is also published as a Docker container at https://hub.docker.com/r/identifiersorg/cmd-iaso. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

3.
Bioinformatics ; 37(12): 1781-1782, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33031499

RESUMO

MOTIVATION: Since its launch in 2010, Identifiers.org has become an important tool for the annotation and cross-referencing of Life Science data. In 2016, we established the Compact Identifier (CID) scheme (prefix: accession) to generate globally unique identifiers for data resources using their locally assigned accession identifiers. Since then, we have developed and improved services to support the growing need to create, reference and resolve CIDs, in systems ranging from human readable text to cloud-based e-infrastructures, by providing high availability and low-latency cloud-based services, backed by a high-quality, manually curated resource. RESULTS: We describe a set of services that can be used to construct and resolve CIDs in Life Sciences and beyond. We have developed a new front end for accessing the Identifiers.org registry data and APIs to simplify integration of Identifiers.org CID services with third-party applications. We have also deployed the new Identifiers.org infrastructure in a commercial cloud environment, bringing our services closer to the data. AVAILABILITYAND IMPLEMENTATION: https://identifiers.org.


Assuntos
Disciplinas das Ciências Biológicas , Computação em Nuvem , Humanos
4.
Nat Commun ; 11(1): 499, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980649

RESUMO

Protein-protein-interaction networks (PPINs) organize fundamental biological processes, but how oncogenic mutations impact these interactions and their functions at a network-level scale is poorly understood. Here, we analyze how a common oncogenic KRAS mutation (KRASG13D) affects PPIN structure and function of the Epidermal Growth Factor Receptor (EGFR) network in colorectal cancer (CRC) cells. Mapping >6000 PPIs shows that this network is extensively rewired in cells expressing transforming levels of KRASG13D (mtKRAS). The factors driving PPIN rewiring are multifactorial including changes in protein expression and phosphorylation. Mathematical modelling also suggests that the binding dynamics of low and high affinity KRAS interactors contribute to rewiring. PPIN rewiring substantially alters the composition of protein complexes, signal flow, transcriptional regulation, and cellular phenotype. These changes are validated by targeted and global experimental analysis. Importantly, genetic alterations in the most extensively rewired PPIN nodes occur frequently in CRC and are prognostic of poor patient outcomes.


Assuntos
Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Receptores ErbB/metabolismo , Mutação/genética , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas p21(ras)/genética , Linhagem Celular Tumoral , Humanos , Fosforilação , Prognóstico , Análise de Sobrevida , Proteína de Morte Celular Associada a bcl/metabolismo
5.
Nucleic Acids Res ; 47(D1): D442-D450, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30395289

RESUMO

The PRoteomics IDEntifications (PRIDE) database (https://www.ebi.ac.uk/pride/) is the world's largest data repository of mass spectrometry-based proteomics data, and is one of the founding members of the global ProteomeXchange (PX) consortium. In this manuscript, we summarize the developments in PRIDE resources and related tools since the previous update manuscript was published in Nucleic Acids Research in 2016. In the last 3 years, public data sharing through PRIDE (as part of PX) has definitely become the norm in the field. In parallel, data re-use of public proteomics data has increased enormously, with multiple applications. We first describe the new architecture of PRIDE Archive, the archival component of PRIDE. PRIDE Archive and the related data submission framework have been further developed to support the increase in submitted data volumes and additional data types. A new scalable and fault tolerant storage backend, Application Programming Interface and web interface have been implemented, as a part of an ongoing process. Additionally, we emphasize the improved support for quantitative proteomics data through the mzTab format. At last, we outline key statistics on the current data contents and volume of downloads, and how PRIDE data are starting to be disseminated to added-value resources including Ensembl, UniProt and Expression Atlas.


Assuntos
Bases de Dados de Proteínas , Espectrometria de Massas , Proteômica , Peptídeos/química , Software
6.
Nucleic Acids Res ; 45(D1): D1100-D1106, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27924013

RESUMO

The ProteomeXchange (PX) Consortium of proteomics resources (http://www.proteomexchange.org) was formally started in 2011 to standardize data submission and dissemination of mass spectrometry proteomics data worldwide. We give an overview of the current consortium activities and describe the advances of the past few years. Augmenting the PX founding members (PRIDE and PeptideAtlas, including the PASSEL resource), two new members have joined the consortium: MassIVE and jPOST. ProteomeCentral remains as the common data access portal, providing the ability to search for data sets in all participating PX resources, now with enhanced data visualization components.We describe the updated submission guidelines, now expanded to include four members instead of two. As demonstrated by data submission statistics, PX is supporting a change in culture of the proteomics field: public data sharing is now an accepted standard, supported by requirements for journal submissions resulting in public data release becoming the norm. More than 4500 data sets have been submitted to the various PX resources since 2012. Human is the most represented species with approximately half of the data sets, followed by some of the main model organisms and a growing list of more than 900 diverse species. Data reprocessing activities are becoming more prominent, with both MassIVE and PeptideAtlas releasing the results of reprocessed data sets. Finally, we outline the upcoming advances for ProteomeXchange.


Assuntos
Bases de Dados de Proteínas , Proteoma , Proteômica , Ferramenta de Busca , Biologia Computacional/métodos , Humanos , Espectrometria de Massas , Proteômica/métodos , Software , Navegador , Fluxo de Trabalho
7.
F1000Res ; 5: 1745, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27853512

RESUMO

Highly connected nodes (hubs) in biological networks are topologically important to the structure of the network and have also been shown to be preferentially associated with a range of phenotypes of interest. The relative importance of a hub node, however, can change depending on the biological context. Here, we report a Cytoscape app, the Contextual Hub Analysis Tool (CHAT), which enables users to easily construct and visualize a network of interactions from a gene list of interest, integrate contextual information, such as gene expression data, and identify hub nodes that are more highly connected to contextual nodes (e.g. genes that are differentially expressed) than expected by chance. In a case study, we use CHAT to construct a network of genes that are differentially expressed in Dengue fever, a viral infection. CHAT was used to identify and compare contextual and degree-based hubs in this network. The top 20 degree-based hubs were enriched in pathways related to the cell cycle and cancer, which is likely due to the fact that proteins involved in these processes tend to be highly connected in general. In comparison, the top 20 contextual hubs were enriched in pathways commonly observed in a viral infection including pathways related to the immune response to viral infection. This analysis shows that such contextual hubs are considerably more biologically relevant than degree-based hubs and that analyses which rely on the identification of hubs solely based on their connectivity may be biased towards nodes that are highly connected in general rather than in the specific context of interest. AVAILABILITY: CHAT is available for Cytoscape 3.0+ and can be installed via the Cytoscape App Store (http://apps.cytoscape.org/apps/chat).

8.
J Proteome Res ; 15(6): 2072-9, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27086506

RESUMO

Recent advances in mass-spectrometry-based proteomics are now facilitating ambitious large-scale investigations of the spatial and temporal dynamics of the proteome; however, the increasing size and complexity of these data sets is overwhelming current downstream computational methods, specifically those that support the postquantification analysis pipeline. Here we present HiQuant, a novel application that enables the design and execution of a postquantification workflow, including common data-processing steps, such as assay normalization and grouping, and experimental replicate quality control and statistical analysis. HiQuant also enables the interpretation of results generated from large-scale data sets by supporting interactive heatmap analysis and also the direct export to Cytoscape and Gephi, two leading network analysis platforms. HiQuant may be run via a user-friendly graphical interface and also supports complete one-touch automation via a command-line mode. We evaluate HiQuant's performance by analyzing a large-scale, complex interactome mapping data set and demonstrate a 200-fold improvement in the execution time over current methods. We also demonstrate HiQuant's general utility by analyzing proteome-wide quantification data generated from both a large-scale public tyrosine kinase siRNA knock-down study and an in-house investigation into the temporal dynamics of the KSR1 and KSR2 interactomes. Download HiQuant, sample data sets, and supporting documentation at http://hiquant.primesdb.eu .


Assuntos
Proteômica/métodos , Software , Fluxo de Trabalho , Animais , Biologia Computacional , Interpretação Estatística de Dados , Humanos , Espectrometria de Massas/métodos , Mapeamento de Interação de Proteínas , Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...