Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(7): 1999-2005, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36794828

RESUMO

Understanding the spatial dynamics of nanoscale exciton transport beyond the temporal decay is essential for further improvements of nanostructured optoelectronic devices, such as solar cells. The diffusion coefficient (D) of the nonfullerene electron acceptor Y6 has so far only been determined indirectly, from singlet-singlet annihilation (SSA) experiments. Here, we present the full picture of the exciton dynamics, adding the spatial domain to the temporal one, by spatiotemporally resolved photoluminescence microscopy. In this way, we directly track diffusion and we are able to decouple the real spatial broadening from its overestimation given by SSA. We measured the diffusion coefficient, D = 0.017 ± 0.003 cm2/s, which gives a Y6 film diffusion length of L=Dτ≈35 nm. Thus, we provide an essential tool that enables a direct and free-of-artifacts determination of diffusion coefficients, which we expect to be pivotal for further studies on exciton dynamics in energy materials.

2.
J Phys Chem Lett ; 12(16): 3983-3988, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33877838

RESUMO

The performance of nonfullerene-acceptor-(NFA)-based organic solar cells is rapidly approaching the efficiency of inorganic cells. The chemical versatility of NFAs extends the light-harvesting range to the infrared, while preserving a considerably high open-circuit-voltage, crucial to achieve power-conversion efficiencies >17%. Such low voltage losses in the charge separation process have been attributed to a low-driving-force and efficient exciton dissociation. Here, we address the nature of the subpicosecond dynamics of electron/hole transfer in PM6/Y6 solar cells. While previous reports focused on active layers only, we developed a photocurrent-detected two-dimensional spectroscopy to follow the charge transfer in fully operating devices. Our measurements reveal an efficient hole-transfer from the Y6-acceptor to the PM6-donor on the subpicosecond time scale. On the contrary, at the same time scale, no electron-transfer is seen from the donor to the acceptor. These findings, putting ultrafast spectroscopy in action on operating optoelectronic devices, provide insight for further enhancing NFA solar cell performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA