Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Graph Model ; 122: 108502, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37116336

RESUMO

Polygalacturonase (PG) is an important hydrolytic enzyme involved in pectin disassembly and the subsequent textural changes during fruit ripening. Although the interaction of fungal PGs with other proteins has been documented, the interaction of plant PGs with other plant proteins has not yet been studied. In this study, the molecular mechanisms involved in raspberry fruit ripening, particularly the polygalacturonase (RiPG) interaction with polygalacturonase inhibiting protein (RiPGIP) and substrate, were investigated with a structural approach. The 3D model of RiPG2 and RiPGIP3 was built using a comparative modeling strategy and validated using molecular dynamics (MD) simulations. The RiPG2 model structure comprises 11 complete coils of right-handed parallel ß-helix architecture, with an average of 27 amino acid residues per turn. The structural model of the RiPGIP3 displays a typical structure of LRR protein, with the right-handed superhelical fold with an extended parallel ß-sheet. The conformational interaction between the RiPG2 protein and RiPGIP3 showed that RiPGIP3 could bind to the enzyme and thereby leave the active site cleft accessible to the substrate. All this evidence indicates that RiPG2 enzyme could interact with RiPGIP3 protein. It can be a helpful model for evaluating protein-protein interaction as a potential regulator mechanism of hydrolase activity during pectin disassembly in fruit ripening.


Assuntos
Poligalacturonase , Rubus , Poligalacturonase/química , Poligalacturonase/metabolismo , Rubus/metabolismo , Simulação de Dinâmica Molecular , Frutas/metabolismo , Pectinas/metabolismo , Proteínas de Plantas/metabolismo
2.
Front Plant Sci ; 13: 771094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356117

RESUMO

Pomegranate (Punica granatum) is a non-climacteric fruit with a high antioxidant content in arils and peels, of which 92% are anthocyanins and tannins. However, it is susceptible to chilling injury (CI), a physiological disorder concentrated in the peel, which can affect the organoleptic quality of the fruit. To understand the effects of modified atmosphere and ethylene in responses to stress on the antioxidant quality of the fruit and composition of fatty acids in the peel under CI conditions, the exogenous ethylene treatments (0.5, 1.0, and 1.5 µg L-1), 1-methylcyclopropene (1-MCP; 1 µl L-1), modified atmosphere packaging (MAP: XTend™ bags), combined strategy MAP/1-MCP, and package in macroperforated bags (MPB-control treatment) were evaluated. The assay was performed in cold conditions (2 ± 1°C; 85% RH) to stimulate damage and was sampled for 120 days (+3 days at 20°C). During cold storage, CI symptoms began at 20 days in MPB and at 60 days for all treatments with exogenous ethylene; CI symptoms were delayed up to 120 days in MAP, 1-MCP, and the combined MAP/1-MCP treatment. Damage was concentrated in the peel. Ethylene and MPB-control treatments induced significant electrolyte leakage, lipid peroxidation, and oxidative damage. In contrast, MAP alone or in combination with 1-MCP successfully delayed CI symptoms. However, no significant differences were observed between treatments in fatty acid content, e.g., in the peel, oleic acid, linoleic acid, palmitic acid, but a significant loss was noted after 60 days of storage. Cold storage caused an increase in anthocyanin concentration in the peel and arils, increasing up to 12 times in the peel of the fruit treated with ethylene at the final stage of storage (120 days + 3 days at 20°C), with non-significant differences in the tannin content in the peel. During long-term cold storage of pomegranate, MAP and 1-MCP treatments delay and reduce the appearance of CI symptoms. This long cold storage induces an important decrease in the unsaturated/saturated fatty acid ratio, which is not reversed by any postharvest treatment. A higher unsaturated/saturated fatty acid ratio after 1-MCP treatments showed a protective effect in peel tissues. In addition, it was possible to increase the concentration of anthocyanins in the peel of cold-storage pomegranates treated with ethylene.

3.
Antioxidants (Basel) ; 10(12)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34943100

RESUMO

The peumo (Cryptocarya alba) is a native fruit from central Chile that belongs to the Lauraceae family. To characterize the development and the potential health benefits of this edible fruit, quality and physiological parameters, along with antioxidant capacity, were evaluated during three clearly defined developmental stages of the fruit in two seasons. The most distinguishable attributes of ripe fruit were the change in size and color. Low CO2 production and no detectable ethylene levels suggested non-climacteric behavior of the peumo fruit. Peumo demonstrate a significant increase in their antioxidant capacity per 1 g of fresh weight (FW) of the sample, from small to ripe fruit. Higher values in ripe fruit (FRAP: 37.1-38.3 µmol FeSO4/gFW, TEAC: 7.9-8.1 mmol TE/gFW, DPPH: 8.4-8.7 IC50 µg/mL, and ORAC: = 0.19-0.20 mmol TE/gFW) were observed than those in blueberry fruit (FRAP: 4.95 µmol FeSO4/gFW, TEAC: 1.25 mmol TE/gFW, DPPH: 11.3 IC50 µg/mL, and ORAC: 0.032 mmol TE/ gFW). The methanol extracts of ripe fruit displayed the presence of polyphenol acids and quercetin, an ORAC value of 0.637 ± 0.061 mmol TE per g dried weight (DW), and a high cellular antioxidant and anti-inflammatory potential, the latter exceeding the effect of quercetin and indomethacin used as standard molecules. Also, the assay of isolated rat aorta with endothelium-dependent relaxation damage demonstrated that the peumo extract induced vascular protection, depending on its concentration under a high glucose condition. These results demonstrate that these endemic fruits have a good chance as ingredients or foods with functional properties.

4.
Data Brief ; 21: 1521-1525, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30480063

RESUMO

The data presented in this article are related to the research article entitled "Expression of two indole-3-acetic acid (IAA)-amido synthetase (GH3) genes during fruit development of raspberry (Rubus idaeus Heritage)" (Bernales et al., In press). This data article describes the relation of all size variables between them and with the weight showing an increasing trend between length and weight and an inverse relation of fruit firmness and ethylene production during development. In addition, IAA treatment during auxin in-vitro assay showed no significant changes in firmness, a significant increase of ethylene and respiratory production.

5.
J Sci Food Agric ; 98(13): 4854-4865, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29573436

RESUMO

BACKGROUND: Pomegranate (Punica granatum) is a non-climacteric fruit susceptible to chilling injury (CI) at temperatures below 5 °C. To understand the influences of ethylene and modified atmosphere on CI physiological disorders of pomegranate, exogenous ethrel (0.5, 1 and 1.5 µg L-1 ) treatments, 1-methylcyclopropene (1-MCP) (1 µL L-1 ) exposure, packaging in a modified atmosphere (MAP) (XTend™ bags; StePac, São Paulo, Brazil), a MAP/1-MCP combination, and packaging in macro-perforated bags (MPB) were applied. The treated fruits were cold stored (2 ± 1 °C; 85% relative humidity) and sampled during 120 + 3 days at 20 °C. RESULTS: During cold storage, CI symptoms started at 20 days in MPB and at 60 days for all exogenous ethylene treatments, and were delayed to 120 days in MAP, 1-MCP and MAP/1-MCP treatments. MPB and ethylene treatments induced significant electrolyte leakage, oxidative damage, lipid peroxidation, ethylene and CO2 production, and 1-aminocyclopropane-1-carboxylic acid oxidase activity, without any change in total soluble solids, titratable acidity or skin and aril colours. Conversely, MAP by itself, or in combination with 1-MCP application, effectively delayed CI symptoms. CONCLUSION: During long-term cold storage of this non-climacteric fruit, ethrel application induced endogenous ethylene biosynthesis, accelerating the appearance of CI symptoms in contrast to the observations made for MAP and 1-MCP treatments. © 2018 Society of Chemical Industry.


Assuntos
Ciclopropanos/farmacologia , Conservação de Alimentos/métodos , Frutas/química , Lythraceae/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Atmosfera/análise , Temperatura Baixa , Embalagem de Alimentos , Armazenamento de Alimentos , Frutas/efeitos dos fármacos , Lythraceae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...