Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteins ; 87(11): 931-942, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31162724

RESUMO

Like many Gram-negative pathogens, Shigella rely on a type three secretion system (T3SS) for injection of effector proteins directly into eukaryotic host cells to initiate and sustain infection. Protein secretion through the needle-like type three secretion apparatus (T3SA) requires ATP hydrolysis by the T3SS ATPase Spa47, making it a likely target for in vivo regulation of T3SS activity and an attractive target for small molecule therapeutics against shigellosis. Here, we developed a model of an activated Spa47 homo-hexamer, identifying two distinct regions at each protomer interface that we hypothesized to provide intermolecular interactions supporting Spa47 oligomerization and enzymatic activation. Mutational analysis and a series of high-resolution crystal structures confirm the importance of these residues, as many of the engineered mutants are unable to form oligomers and efficiently hydrolyze ATP in vitro. Furthermore, in vivo evaluation of Shigella virulence phenotype uncovered a strong correlation between T3SS effector protein secretion, host cell membrane disruption, and cellular invasion by the tested mutant strains, suggesting that perturbation of the identified interfacial residues/interactions influences Spa47 activity through preventing oligomer formation, which in turn regulates Shigella virulence. The most impactful mutations are observed within the conserved Site 2 interface where the native residues support oligomerization and likely contribute to a complex hydrogen bonding network that organizes the active site and supports catalysis. The critical reliance on these conserved residues suggests that aspects of T3SS regulation may also be conserved, providing promise for the development of a cross-species therapeutic that broadly targets T3SS ATPase oligomerization and activation.


Assuntos
Adenosina Trifosfatases/metabolismo , Disenteria Bacilar/metabolismo , Shigella flexneri/fisiologia , Sistemas de Secreção Tipo III/metabolismo , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Shigella flexneri/química , Shigella flexneri/patogenicidade
2.
Biochemistry ; 56(49): 6503-6514, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29134812

RESUMO

Type three secretion systems (T3SS) are specialized nanomachines that support infection by injecting bacterial proteins directly into host cells. The Shigella T3SS has uniquely evolved to sense environmental levels of the bile salt deoxycholate (DOC) and upregulate virulence in response to DOC. In this study, we describe a rare i + 5 hydrogen bonding secondary structure element (π-helix) within the type three secretion system tip protein IpaD that plays a critical role in DOC-enhanced virulence. Specifically, engineered mutations within the π-helix altered the pathogen's response to DOC, with one mutant construct in particular exhibiting an unprecedented reduction in virulence following DOC exposure. Fluorescence polarization binding assays showed that these altered DOC responses are not the result of differences in affinity between IpaD and DOC, but rather differences in the DOC-dependent T3SS tip maturation resulting from binding of IpaD to translocator/effector protein IpaB. Together, these findings begin to uncover the complex mechanism of DOC-enhanced Shigella virulence while identifying an uncommon structural element that may provide a much needed target for non-antibiotic treatment of Shigella infection.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Ácido Desoxicólico/metabolismo , Disenteria Bacilar/metabolismo , Disenteria Bacilar/microbiologia , Shigella flexneri/patogenicidade , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Estrutura Secundária de Proteína , Shigella flexneri/genética , Shigella flexneri/metabolismo , Sistemas de Secreção Tipo III/genética , Virulência
3.
J Pharm Sci ; 105(7): 2240-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27297397

RESUMO

Shigella rely on a type III secretion system as the primary virulence factor for invasion and colonization of human hosts. Although there are an estimated 90 million Shigella infections, annually responsible for more than 100,000 deaths worldwide, challenges isolating and stabilizing many type III secretion system proteins have prevented a full understanding of the Shigella invasion mechanism and additionally slowed progress toward a much needed Shigella vaccine. Here, we show that the non-denaturing zwitterionic detergent N, N-dimethyldodecylamine N-oxide (LDAO) and non-ionic detergent n-octyl-oligo-oxyethylene efficiently isolated the hydrophobic Shigella translocator protein IpaC from the co-purified IpaC/IpgC chaperone-bound complex. Both detergents resulted in monomeric IpaC that exhibits strong membrane binding and lysis characteristics while the chaperone-bound complex does not, suggesting that the stabilizing detergents provide a means of following IpaC "activation" in vitro. Additionally, biophysical characterization found that LDAO provides significant thermal and temporal stability to IpaC, protecting it for several days at room temperature and brief exposure to temperatures reaching 90°C. In summary, this work identified and characterized conditions that provide stable, membrane active IpaC, providing insight into key interactions with membranes and laying a strong foundation for future vaccine formulation studies taking advantage of the native immunogenicity of IpaC and the stability provided by LDAO.


Assuntos
Antígenos de Bactérias/química , Cromatografia em Gel , Dicroísmo Circular , Reagentes de Ligações Cruzadas , Detergentes/química , Dimetilaminas , Estabilidade de Medicamentos , Luz , Bicamadas Lipídicas , Lipossomos , Chaperonas Moleculares , Fosfolipídeos/química , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...