Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
PLoS One ; 14(12): e0226302, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31851695

RESUMO

Primary cell isolation from the central nervous system (CNS) has allowed fundamental understanding of blood-brain barrier (BBB) properties. However, poorly described isolation techniques or suboptimal cellular purity has been a weak point of some published scientific articles. Here, we describe in detail how to isolate and enrich, using a common approach, endothelial cells (ECs) from adult mouse brains, as well as pericytes (PCs) and astrocytes (ACs) from newborn mouse brains. Our approach allowed the isolation of these three brain cell types with purities of around 90%. Furthermore, using our protocols, around 3 times more PCs and 2 times more ACs could be grown in culture, as compared to previously published protocols. The cells were identified and characterized using flow cytometry and confocal microscopy. The ability of ECs to form a tight monolayer was assessed for passages 0 to 3. The expression of claudin-5, occludin, zonula occludens-1, P-glycoprotein-1 and breast cancer resistance protein by ECs, as well as the ability of the cells to respond to cytokine stimuli (TNF-α, IFN-γ) was also investigated by q-PCR. The transcellular permeability of ECs was evaluated in the presence of pericytes or astrocytes in a Transwell® model by measuring the transendothelial electrical resistance (TEER), dextran-FITC and sodium fluorescein permeability. Overall, ECs at passages 0 and 1 featured the best properties valued in a BBB model. Furthermore, pericytes did not increase tightness of EC monolayers, whereas astrocytes did regardless of their seeding location. Finally, ECs resuspended in fetal bovine serum (FBS) and dimethyl sulfoxide (DMSO) could be cryopreserved in liquid nitrogen without affecting their phenotype nor their capacity to form a tight monolayer, thus allowing these primary cells to be used for various longitudinal in vitro studies of the blood-brain barrier.


Assuntos
Astrócitos , Encéfalo/citologia , Separação Celular , Células Endoteliais , Pericitos , Animais , Barreira Hematoencefálica/citologia , Técnicas de Cultura de Células , Feminino , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal
3.
Pharmaceutics ; 11(11)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717321

RESUMO

Since most preclinical drug permeability assays across the blood-brain barrier (BBB) are still evaluated in rodents, we compared an in vitro mouse primary endothelial cell model to the mouse b.End3 and the acellular parallel artificial membrane permeability assay (PAMPA) models for drug screening purposes. The mRNA expression of key feature membrane proteins of primary and bEnd.3 mouse brain endothelial cells were compared. Transwell® monolayer models were further characterized in terms of tightness and integrity. The in vitro in vivo correlation (IVIVC) was obtained by the correlation of the in vitro permeability data with log BB values obtained in mice for seven drugs. The mouse primary model showed higher monolayer integrity and levels of mRNA expression of BBB tight junction (TJ) proteins and membrane transporters (MBRT), especially for the efflux transporter Pgp. The IVIVC and drug ranking underlined the superiority of the primary model (r2 = 0.765) when compared to the PAMPA-BBB (r2 = 0.391) and bEnd.3 cell line (r2 = 0.019) models. The primary monolayer mouse model came out as a simple and reliable candidate for the prediction of drug permeability across the BBB. This model encompasses a rapid set-up, a fair reproduction of BBB tissue characteristics, and an accurate drug screening.

4.
Nanomedicine ; 16: 185-194, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30582996

RESUMO

Diblock PLA-PEG nanoparticles were produced to establish the role of PEG chain length on brain vascular endothelial cell transcytosis. 100-nm nanoparticles tagged with fluorescent pyrene butanol and coated with PEG chains (Mw: 1-10 kDa), at similar PEG surface density, were used to study endocytosis and transcytosis phenomena on mouse vascular endothelial cell monolayers. The transport mechanisms were then investigated through inhibitory processes. Our results show that there is an evident correlation between PEG chain length and nanoparticle translocation. The highest transcytosis rates were obtained with PEG5000 and PEG10000 and macropinocytosis appeared to play a central role in cell uptake. This study constitutes the first systematic exploration of the role of PEG chain length on nanoparticle endocytosis and transcytosis in an in vitro model of the blood-brain barrier.


Assuntos
Encéfalo/citologia , Células Endoteliais/metabolismo , Nanopartículas/química , Polietilenoglicóis/química , Transcitose/fisiologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Camundongos , Nanopartículas/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...