Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(18): 12836-12849, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38683943

RESUMO

The biological properties of two water-soluble organic cations based on polypyridyl structures commonly used as ligands for photoactive transition metal complexes designed to interact with biomolecules are investigated. A cytotoxicity screen employing a small panel of cell lines reveals that both cations show cytotoxicity toward cancer cells but show reduced cytotoxicity to noncancerous HEK293 cells with the more extended system being notably more active. Although it is not a singlet oxygen sensitizer, the more active cation also displayed enhanced potency on irradiation with visible light, making it active at nanomolar concentrations. Using the intrinsic luminescence of the cations, their cellular uptake was investigated in more detail, revealing that the active compound is more readily internalized than its less lipophilic analogue. Colocalization studies with established cell probes reveal that the active cation predominantly localizes within lysosomes and that irradiation leads to the disruption of mitochondrial structure and function. Stimulated emission depletion (STED) nanoscopy and transmission electron microscopy (TEM) imaging reveal that treatment results in distinct lysosomal swelling and extensive cellular vacuolization. Further imaging-based studies confirm that treatment with the active cation induces lysosomal membrane permeabilization, which triggers lysosome-dependent cell-death due to both necrosis and caspase-dependent apoptosis. A preliminary toxicity screen in the Galleria melonella animal model was carried out on both cations and revealed no detectable toxicity up to concentrations of 80 mg/kg. Taken together, these studies indicate that this class of synthetically easy-to-access photoactive compounds offers potential as novel therapeutic leads.


Assuntos
Antineoplásicos , Cátions , Fenazinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Cátions/química , Cátions/farmacologia , Fenazinas/química , Fenazinas/farmacologia , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Células HEK293 , Apoptose/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Animais , Nanomedicina Teranóstica , Estrutura Molecular
2.
Environ Sci Technol ; 58(3): 1495-1508, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38186267

RESUMO

Over the past decade, there has been a significant rise in the use of vaping devices, particularly among adolescents, raising concerns for effects on respiratory health. Pressingly, many recent vaping-related lung injuries are unexplained by current knowledge, and the overall implications of vaping for respiratory health are poorly understood. This study investigates the effect of hydrophobic vaping liquid chemicals on the pulmonary surfactant biophysical function. We focus on the commonly used flavoring benzaldehyde and its vaping byproduct, benzaldehyde propylene glycol acetal. The study involves rigorous testing of the surfactant biophysical function in Langmuir trough and constrained sessile drop surfactometer experiments with both protein-free synthetic surfactant and hydrophobic protein-containing clinical surfactant models. The study reveals that exposure to these vaping chemicals significantly interferes with the synthetic and clinical surfactant biophysical function. Further atomistic simulations reveal preferential interactions with SP-B and SP-C surfactant proteins. Additionally, data show surfactant lipid-vaping chemical interactions and suggest significant transfer of vaping chemicals to the experimental subphase, indicating a toxicological mechanism for the alveolar epithelium. Our study, therefore, reveals novel mechanisms for the inhalational toxicity of vaping. This highlights the need to reassess the safety of vaping liquids for respiratory health, particularly the use of aldehyde chemicals as vaping flavorings.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Surfactantes Pulmonares , Vaping , Adolescente , Humanos , Aldeídos , Benzaldeídos , Tensoativos , Aromatizantes
3.
EBioMedicine ; 99: 104901, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061242

RESUMO

Humans are exposed to micro-and-nano plastics (MNPs) through various routes, but the adverse health effects of MNPs on different organ systems are not yet fully understood. This review aims to provide an overview of the potential impacts of MNPs on various organ systems and identify knowledge gaps in current research. The summarized results suggest that exposure to MNPs can lead to health effects through oxidative stress, inflammation, immune dysfunction, altered biochemical and energy metabolism, impaired cell proliferation, disrupted microbial metabolic pathways, abnormal organ development, and carcinogenicity. There is limited human data on the health effects of MNPs, despite evidence from animal and cellular studies. Most of the published research has focused on specific types of MNPs to assess their toxicity, while other types of plastic particles commonly found in the environment remain unstudied. Future studies should investigate MNPs exposure by considering realistic concentrations, dose-dependent effects, individual susceptibility, and confounding factors.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Poluentes Químicos da Água , Animais , Humanos , Microplásticos , Proliferação de Células , Metabolismo Energético , Inflamação
4.
J Hazard Mater ; 457: 131828, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37320902

RESUMO

The use of electronic cigarettes (e-cigs) is rapidly increasing worldwide and is promoted as a smoking cessation tool. The impact of traditional cigs on human health has been well-defined in both animal and human studies. In contrast, little is known about the adverse effects of e-cigs exposure on human health. This review summarizes the impact of e-cigs exposure on different organ systems based on the rapidly expanding recent evidence from experimental and human studies. A number of growing studies have shown the adverse effects of e-cigs exposure on various organ systems. The summarized data in this review indicate that while e-cigs use causes less adverse effects on different organs compared to traditional cigs, its long-term exposure may lead to serious health effects. Data on short-term organ effects are limited and there is no sufficient evidence on long-term organ effects. Moreover, the adverse effects of secondhand and third hand e-cigs vapour exposure have not been thoroughly investigated in previous studies. Although some studies demonstrated e-cigs used as a smoking cessation tool, there is a lack of strong evidence to support it. While some researchers suggested e-cigs as a safer alternative to tobacco smoking, their long-term exposure health effects remain largely unknown. Therefore, more epidemiological and prospective studies including mechanistic studies are needed to address the potential adverse health effects of e-cigs to draw a firm conclusion about their safe use. A wide variation in e-cigs products and the lack of standardized testing methods are the major barriers to evaluating the existing data. Specific regulatory guidelines for both e-cigs components and the manufacturing process may be effective to protect consumer health.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Abandono do Hábito de Fumar , Animais , Humanos , Estudos Prospectivos
5.
Langmuir ; 39(12): 4338-4350, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36917773

RESUMO

The lining of the alveoli is covered by pulmonary surfactant, a complex mixture of surface-active lipids and proteins that enables efficient gas exchange between inhaled air and the circulation. Despite decades of advancements in the study of the pulmonary surfactant, the molecular scale behavior of the surfactant and the inherent role of the number of different lipids and proteins in surfactant behavior are not fully understood. The most important proteins in this complex system are the surfactant proteins SP-B and SP-C. Given this, in this work we performed nonequilibrium all-atom molecular dynamics simulations to study the interplay of SP-B and SP-C with multicomponent lipid monolayers mimicking the pulmonary surfactant in composition. The simulations were complemented by z-scan fluorescence correlation spectroscopy and atomic force microscopy measurements. Our state-of-the-art simulation model reproduces experimental pressure-area isotherms and lateral diffusion coefficients. In agreement with previous research, the inclusion of either SP-B and SP-C increases surface pressure, and our simulations provide a molecular scale explanation for this effect: The proteins display preferential lipid interactions with phosphatidylglycerol, they reside predominantly in the lipid acyl chain region, and they partition into the liquid expanded phase or even induce it in an otherwise packed monolayer. The latter effect is also visible in our atomic force microscopy images. The research done contributes to a better understanding of the roles of specific lipids and proteins in surfactant function, thus helping to develop better synthetic products for surfactant replacement therapy used in the treatment of many fatal lung-related injuries and diseases.


Assuntos
Surfactantes Pulmonares , Fenômenos Biofísicos , Fosfolipídeos/química , Proteínas , Proteína B Associada a Surfactante Pulmonar/química , Surfactantes Pulmonares/química , Propriedades de Superfície , Tensoativos , Proteína C Associada a Surfactante Pulmonar/química
6.
Endocrinology ; 164(5)2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36774542

RESUMO

The incretin receptors, glucagon-like peptide-1 receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR), are prime therapeutic targets for the treatment of type 2 diabetes (T2D) and obesity. They are expressed in pancreatic beta cells where they potentiate insulin release in response to food intake. Despite GIP being the main incretin in healthy individuals, GLP-1R has been favored as a therapeutic target due to blunted GIPR responses in T2D patients and conflicting effects of GIPR agonists and antagonists in improving glucose tolerance and preventing weight gain. There is, however, a recently renewed interest in GIPR biology, following the realization that GIPR responses can be restored after an initial period of blood glucose normalization and the recent development of dual GLP-1R/GIPR agonists with superior capacity for controlling blood glucose levels and weight. The importance of GLP-1R trafficking and subcellular signaling in the control of receptor outputs is well established, but little is known about the pattern of spatiotemporal signaling from the GIPR in beta cells. Here, we have directly compared surface expression, trafficking, and signaling characteristics of both incretin receptors in pancreatic beta cells to identify potential differences that might underlie distinct pharmacological responses associated with each receptor. Our results indicate increased cell surface levels, internalization, degradation, and endosomal vs plasma membrane activity for the GLP-1R, while the GIPR is instead associated with increased plasma membrane recycling, reduced desensitization, and enhanced downstream signal amplification. These differences might have potential implications for the capacity of each incretin receptor to control beta cell function.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Receptores dos Hormônios Gastrointestinais , Humanos , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Polipeptídeo Inibidor Gástrico/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Incretinas/metabolismo , Células Secretoras de Insulina/metabolismo , Receptores dos Hormônios Gastrointestinais/genética
7.
Front Immunol ; 13: 925559, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903108

RESUMO

Sphingolipids, ceramides and cholesterol are integral components of cellular membranes, and they also play important roles in signal transduction by regulating the dynamics of membrane receptors through their effects on membrane fluidity. Here, we combined biochemical and functional assays with single-particle tracking analysis of diffusion in the plasma membrane to demonstrate that the local lipid environment regulates CXCR4 organization and function and modulates chemokine-triggered directed cell migration. Prolonged treatment of T cells with bacterial sphingomyelinase promoted the complete and sustained breakdown of sphingomyelins and the accumulation of the corresponding ceramides, which altered both membrane fluidity and CXCR4 nanoclustering and dynamics. Under these conditions CXCR4 retained some CXCL12-mediated signaling activity but failed to promote efficient directed cell migration. Our data underscore a critical role for the local lipid composition at the cell membrane in regulating the lateral mobility of chemokine receptors, and their ability to dynamically increase receptor density at the leading edge to promote efficient cell migration.


Assuntos
Receptores CXCR4 , Esfingomielinas , Movimento Celular , Ceramidas/metabolismo , Quimiocina CXCL12/antagonistas & inibidores , Quimiocina CXCL12/metabolismo , Humanos , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo
8.
Adv Sci (Weinh) ; 9(11): e2105170, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35166455

RESUMO

The cytokine interferon-gamma (IFN-γ) is a master regulator of innate and adaptive immunity involved in a broad array of human diseases that range from atherosclerosis to cancer. IFN-γ exerts it signaling action by binding to a specific cell surface receptor, the IFN-γ receptor (IFN-γR), whose activation critically depends on its partition into lipid nanodomains. However, little is known about the impact of specific lipids on IFN-γR signal transduction activity. Here, a new conserved cholesterol (chol) binding motif localized within its single transmembrane domain is identified. Through direct binding, chol drives the partition of IFN-γR2 chains into plasma membrane lipid nanodomains, orchestrating IFN-γR oligomerization and transmembrane signaling. Bioinformatics studies show that the signature sequence stands for a conserved chol-binding motif presented in many mammalian membrane proteins. The discovery of chol as the molecular switch governing IFN-γR transmembrane signaling represents a significant advance for understanding the mechanism of lipid selectivity by membrane proteins, but also for figuring out the role of lipids in modulating cell surface receptor function. Finally, this study suggests that inhibition of the chol-IFNγR2 interaction may represent a potential therapeutic strategy for various IFN-γ-dependent diseases.


Assuntos
Receptores de Interferon , Transdução de Sinais , Animais , Sítios de Ligação , Colesterol , Humanos , Interferon gama/metabolismo , Interferon gama/farmacologia , Lipídeos , Mamíferos/metabolismo , Receptores de Interferon/metabolismo , Receptor de Interferon gama
9.
Small Methods ; 5(2): e2000711, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-34927881

RESUMO

Lipid liquid-liquid immiscibility and its consequent lateral heterogeneity have been observed under thermodynamic equilibrium in model and native membranes. However, cholesterol-rich membrane domains, sometimes referred to as lipid rafts, are difficult to observe spatiotemporally in live cells. Despite their importance in many biological processes, robust evidence for their existence remains elusive. This is mainly due to the difficulty in simultaneously determining their chemical composition and physicochemical nature, whilst spatiotemporally resolving their nanodomain lifetime and molecular dynamics. In this study, a bespoke method based on super-resolution stimulated emission depletion (STED) microscopy and raster imaging correlation spectroscopy (RICS) is used to overcome this issue. This methodology, laser interleaved confocal RICS and STED-RICS (LICSR), enables simultaneous tracking of lipid lateral packing and dynamics at the nanoscale. Previous work indicated that, in polarized epithelial cells, the midbody remnant licenses primary cilium formation through an unidentified mechanism. LICSR shows that lipid immiscibility and its adaptive collective nanoscale self-assembly are crucial for the midbody remnant to supply condensed membranes to the centrosome for the biogenesis of the ciliary membrane. Hence, this work poses a breakthrough in the field of lipid biology by providing compelling evidence of a functional role for liquid ordered-like membranes in primary ciliogenesis.


Assuntos
Membrana Celular/química , Cílios/fisiologia , Bicamadas Lipídicas/química , Animais , Linhagem Celular , Citocinese , Cães , Células Madin Darby de Rim Canino , Análise Espaço-Temporal
10.
Small Methods ; 5(9): e2100430, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34928061

RESUMO

Despite more than 20 years of work since the lipid raft concept was proposed, the existence of these nanostructures remains highly controversial due to the lack of noninvasive methods to investigate their native nanorganization in living unperturbed cells. There is an unmet need for probes for direct imaging of nanoscale membrane dynamics with high spatial and temporal resolution in living cells. In this paper, a bioorthogonal-based cholesterol probe (chol-N3 ) is developed that, combined with nanoscopy, becomes a new powerful method for direct visualization and characterization of lipid raft at unprecedented resolution in living cells. The chol-N3 probe mimics cholesterol in synthetic and cellular membranes without perturbation. When combined with live-cell super-resolution microscopy, chol-N3 demonstrates the existence of cholesterol-rich nanodomains of <50 nm at the plasma membrane of resting living cells. Using this tool, the lipid membrane structure of such subdiffraction limit domains is identified, and the nanoscale spatiotemporal organization of cholesterol in the plasma membrane of living cells reveals multiple cholesterol diffusion modes at different spatial localizations. Finally, imaging across thick organ samples outlines the potential of this new method to address essential biological questions that were previously beyond reach.


Assuntos
Colesterol/análise , Microdomínios da Membrana/química , Imagem Molecular/métodos , Sondas Moleculares/química , Neurônios/citologia , Animais , Células Cultivadas , Colesterol/química , Células HeLa , Humanos , Microscopia de Fluorescência , Modelos Moleculares , Conformação Molecular , Neurônios/química , Ratos , Análise Espaço-Temporal
11.
J Am Chem Soc ; 143(48): 20442-20453, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808044

RESUMO

With the aim of developing photostable near-infrared cell imaging probes, a convenient route to the synthesis of heteroleptic OsII complexes containing the Os(TAP)2 fragment is reported. This method was used to synthesize the dinuclear OsII complex, [{Os(TAP)2}2tpphz]4+ (where tpphz = tetrapyrido[3,2-a:2',3'-c:3″,2''-h:2‴,3'''-j]phenazine and TAP = 1,4,5,8- tetraazaphenanthrene). Using a combination of resonance Raman and time-resolved absorption spectroscopy, as well as computational studies, the excited state dynamics of the new complex were dissected. These studies revealed that, although the complex has several close lying excited states, its near-infrared, NIR, emission (λmax = 780 nm) is due to a low-lying Os → TAP based 3MCLT state. Cell-based studies revealed that unlike its RuII analogue, the new complex is neither cytotoxic nor photocytotoxic. However, as it is highly photostable as well as live-cell permeant and displays NIR luminescence within the biological optical window, its properties make it an ideal probe for optical microscopy, demonstrated by its use as a super-resolution NIR STED probe for nuclear DNA.


Assuntos
Complexos de Coordenação/química , DNA/análise , Substâncias Luminescentes/química , Animais , Bovinos , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , Humanos , Substâncias Luminescentes/síntese química , Substâncias Luminescentes/toxicidade , Microscopia Confocal , Osmio/química , Osmio/toxicidade
12.
Methods ; 193: 136-147, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34126167

RESUMO

The primary cilium is a specialized plasma membrane protrusion with important receptors for signalling pathways. In polarized epithelial cells, the primary cilium assembles after the midbody remnant (MBR) encounters the centrosome at the apical surface. The membrane surrounding the MBR, namely remnant-associated membrane patch (RAMP), once situated next to the centrosome, releases some of its lipid components to form a centrosome-associated membrane patch (CAMP) from which the ciliary membrane stems. The RAMP undergoes a spatiotemporal membrane refinement during the formation of the CAMP, which becomes highly enriched in condensed membranes with low lateral mobility. To better understand this process, we have developed a correlative imaging approach that yields quantitative information about the lipid lateral packing, its mobility and collective assembly at the plasma membrane at different spatial scales over time. Our work paves the way towards a quantitative understanding of the spatiotemporal lipid collective assembly at the plasma membrane as a functional determinant in cell biology and its direct correlation with the membrane physicochemical state. These findings allowed us to gain a deeper insight into the mechanisms behind the biogenesis of the ciliary membrane of polarized epithelial cells.


Assuntos
Membrana Celular , Células Epiteliais , Lipídeos
13.
Front Cell Dev Biol ; 8: 581016, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304898

RESUMO

Pulmonary surfactant is a complex mixture of lipids and proteins lining the interior of the alveoli, and constitutes the first barrier to both oxygen and pathogens as they progress toward blood circulation. Despite decades of study, the behavior of the pulmonary surfactant at the molecular scale is poorly understood, which hinders the development of effective surfactant replacement therapies, useful in the treatment of several lung-related diseases. In this work, we combined all-atom molecular dynamics simulations, Langmuir trough measurements, and AFM imaging to study synthetic four-component lipid monolayers designed to model protein-free pulmonary surfactant. We characterized the structural and dynamic properties of the monolayers with a special focus on lateral heterogeneity. Remarkably, simulations reproduce almost quantitatively the experimental data on pressure-area isotherms and the presence of lateral heterogeneities highlighted by AFM. Quite surprisingly, the pressure-area isotherms do not show a plateau region, despite the presence of liquid-condensed nanometer-sized domains at surface pressures larger than 20 mN/m. In the simulations, the liquid-condensed domains were small and transient, but they did not coalesce to yield a separate phase. They were only slightly enriched in DPPC and cholesterol, and their chemical composition remained very similar to the overall composition of the monolayer membrane. Instead, they differed from liquid-expanded regions in terms of membrane thickness (in agreement with AFM data), diffusion rates, as well as acyl chain packing and orientation. We hypothesize that such lateral heterogeneities are crucial for lung surfactant function, as they allow both efficient packing, to achieve low surface tension, and sufficient fluidity, critical for rapid adsorption to the air-liquid interface during the breathing cycle.

14.
Emerg Top Life Sci ; 4(6): 551-554, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33295610

RESUMO

The 1980s mark the starting point of nanotechnology: the capacity to synthesise, manipulate and visualise matter at the nanometre scale. New powers to reach the nanoscale brought us the unprecedented possibility to directly target at the scale of biomolecular interactions, and the motivation to create smart nanostructures that could circumvent the hurdles hindering the success of traditional pharmacological approaches. Forty years on, the progressive integration of bio- and nanotechnologies is starting to produce a transformation of the way we detect, treat and monitor diseases and unresolved medical problems [ 1]. While much of the work remains in research laboratories, the first nano-based treatments, vaccines, drugs, and diagnostic devices, are now receiving approval for commercialisation and clinical use. In this special issue we review recent advances of nanomedical approaches to combat antibiotic resistance, treatment and detection of cancers, targeting neurodegerative diseases, and applications as diverse as dentistry and the treatment of tuberculosis. We also examine the use of advanced smart nanostructured materials in areas such as regenerative medicine, and the controlled release of drugs and treatments. The latter is currently poised to bring ground-breaking changes in immunotherapy: the advent of 'vaccine implants' that continuously control and improve immune responses over time. With the increasingly likely prospect of ending the COVID 19 pandemic with the aid of a nanomedicine-based vaccine (both Moderna and BioNTech/Pfizer vaccines are based on lipid nanoparticle formulations), we are witnessing the coming of age of nanomedicine. This makes it more important than ever to concentrate on safety: in parallel to pursuing the benefits of nanomedine, we must strengthen the continuous focus on nanotoxicology and safety regulation of nanomedicines that can deliver the medical revolution that is within our grasp.


Assuntos
Biotecnologia/métodos , Nanomedicina/métodos , Nanotecnologia/métodos , COVID-19/epidemiologia , COVID-19/virologia , Vacinas contra COVID-19/uso terapêutico , Humanos , Pandemias , SARS-CoV-2/isolamento & purificação
15.
Front Cell Dev Biol ; 8: 573230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195206

RESUMO

Differentiation of keratinocytes is critical for epidermal stratification and formation of a protective stratum corneum. It involves a series of complex processes leading through gradual changes in characteristics and functions of keratinocytes up to their programmed cell death via cornification. The stratum corneum is a relatively impermeable barrier, comprised of dead cell remnants (corneocytes) embedded in lipid matrix. Corneocyte membranes are comprised of specialized lipids linked to late differentiation proteins, contributing to the formation of a stiff and mechanically strengthened layer. To date, the assessment of the progression of keratinocyte differentiation is only possible through determination of specific differentiation markers, e.g., by using proteomics-based approaches. Unfortunately, this requires fixation or cell lysis, and currently there is no robust methodology available to study keratinocyte differentiation in living cells in real-time. Here, we explore new live-cell based approaches for screening differentiation advancement in keratinocytes, in a "calcium switch" model. We employ a polarity-sensitive dye, Laurdan, and Laurdan general polarization function (GP) as a reporter of the degree of membrane lateral packing order or condensation, as an adequate marker of differentiation. We show that the assay is straightforward and can be conducted either on a single cell level using confocal spectral imaging or on the ensemble level using a fluorescence plate reader. Such systematic quantification may become useful for understanding mechanisms of keratinocyte differentiation, such as the role of membrane in homogeneities in stiffness, and for future therapeutic development.

16.
J Extracell Vesicles ; 9(1): 1759926, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32939232

RESUMO

T-cell receptor stimulation induces the convergence of multivesicular bodies towards the microtubule-organizing centre (MTOC) and the polarization of the MTOC to the immune synapse (IS). These events lead to exosome secretion at the IS. We describe here that upon IS formation centrosomal area F-actin decreased concomitantly with MTOC polarization to the IS. PKCδ-interfered T cell clones showed a sustained level of centrosomal area F-actin associated with defective MTOC polarization. We analysed the contribution of two actin cytoskeleton-regulatory proteins, FMNL1 and paxillin, to the regulation of cortical and centrosomal F-actin networks. FMNL1 ß phosphorylation and F-actin reorganization at the IS were inhibited in PKCδ-interfered clones. F-actin depletion at the central region of the IS, a requirement for MTOC polarization, was associated with FMNL1 ß phosphorylation at its C-terminal, autoregulatory region. Interfering all FMNL1 isoforms prevented MTOC polarization; nonetheless, FMNL1 ß re-expression restored MTOC polarization in a centrosomal area F-actin reorganization-independent manner. Moreover, PKCδ-interfered clones exhibited decreased paxillin phosphorylation at the MTOC, which suggests an alternative actin cytoskeleton regulatory pathway. Our results infer that PKCδ regulates MTOC polarization and secretory traffic leading to exosome secretion in a coordinated manner by means of two distinct pathways, one involving FMNL1 ß regulation and controlling F-actin reorganization at the IS, and the other, comprising paxillin phosphorylation potentially controlling centrosomal area F-actin reorganization. ABBREVIATIONS: Ab, antibody; AICD, activation-induced cell death; AIP, average intensity projection; APC, antigen-presenting cell; BCR, B-cell receptor for antigen; C, centre of mass; cent2, centrin 2; cIS, central region of the immune synapse; CMAC, CellTracker™ Blue (7-amino-4-chloromethylcoumarin); cSMAC, central supramolecular activation cluster; CTL, cytotoxic T lymphocytes; DAG, diacylglycerol; DGKα, diacylglycerol kinase α; Dia1, Diaphanous-1; dSMAC, distal supramolecular activation cluster; ECL, enhanced chemiluminescence; ESCRT, endosomal sorting complex required for traffic; F-actin, filamentous actin; Fact-low cIS, F-actin-low region at the centre of the immune synapse; FasL, Fas ligand; FMNL1, formin-like 1; fps, frames per second; GFP, green fluorescent protein; HBSS, Hank's balanced salt solution; HRP, horseradish peroxidase; ILV, intraluminal vesicles; IS, immune synapse; MFI, mean fluorescence intensity; MHC, major histocompatibility complex; MIP, maximal intensity projection; MVB, multivesicular bodies; MTOC, microtubule-organizing centre; NS, not significant; PBL, peripheral blood lymphocytes; PKC, protein kinase C; PKCδ, protein kinase C δ isoform; PLC, phospholipase C; PMA, phorbol myristate acetate; Pol. Index, polarization index; pSMAC, peripheral supramolecular activation cluster; PSF, point spread function; ROI, region of interest; SD, standard deviation; shRNA, short hairpin RNA; SEE, Staphylococcus enterotoxin E; SMAC, supramolecular activation cluster; TCR, T-cell receptor for antigen; T-helper (Th); TRANS, transmittance; WB, Western blot.

17.
Chem Sci ; 11(1): 70-79, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-32110358

RESUMO

In previous studies we reported that specific dinuclear RuII complexes are particularly active against pathogenic Gram-negative bacteria and, unusually for this class of compounds, appeared to display lowered activity against Gram-positive bacteria. With the aim of identifying resistance mechanisms specific to Gram-positive bacteria, the uptake and antimicrobial activity of the lead complex against Staphylococcus aureus SH1000 and other isolates, including MRSA was investigated. This revealed differential, strain specific, sensitivity to the complex. Exploiting the inherent luminescent properties of the RuII complex, super-resolution STED nanoscopy was used to image its initial interaction with S. aureus and confirm its cellular internalization. Membrane damage assays and transmission electron microscopy confirm that the complex disrupts the bacterial membrane structure before internalization, which ultimately results in a small amount of DNA damage. A known resistance mechanism against cationic antimicrobials in Gram-positive bacteria involves increased expression of the mprF gene as this results in an accumulation of positively charged lysyl-phosphatidylglycerol on the outer leaflet of the cytoplasmic membrane that electrostatically repel cationic species. Consistent with this model, it was found that an mprF deficient strain was particularly susceptible to treatment with the lead complex. More detailed co-staining studies also revealed that the complex was more active in S. aureus strains missing, or with altered, wall teichoic acids.

18.
Chem Sci ; 11(33): 8828-8838, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34123136

RESUMO

Six luminescent, mononuclear ruthenium(ii) complexes based on the tetrapyridophenazine (tpphz) and dipyridophenazine (dppz) ligands are reported. The therapeutic activities of the complexes against Gram-negative bacteria (E. coli, A. baumannii, P. aeruginosa) and Gram-positive bacteria (E. faecalis and S. aureus) including pathogenic multi- and pan-drug resistant strains were assessed. Estimated minimum inhibitory and bactericidal concentrations show the activity of the lead compound is comparable to ampicillin and oxacillin in therapeutically sensitive strains and this activity was retained in resistant strains. Unlike related dinuclear analogues the lead compound does not damage bacterial membranes but is still rapidly taken up by both Gram-positive and Gram-negative bacteria in a glucose independent manner. Direct imaging of the complexes through super-resolution nanoscopy and transmission electron microscopy reveals that once internalized the complexes' intracellular target for both Gram-negative and Gram-positive strains is bacterial DNA. Model toxicity screens showed the compound is non-toxic to Galleria mellonella even at exposure concentrations that are orders of magnitude higher than the bacterial MIC.

19.
J Am Chem Soc ; 142(2): 1101-1111, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31846306

RESUMO

The synthesis of new dinuclear complexes containing linked RuII(dppz) and ReI(dppz) moieties is reported. The photophysical and biological properties of the new complex, which incorporates a N,N'-bis(4-pyridylmethyl)-1,6-hexanediamine tether ligand, are compared to a previously reported RuII/ReI complex linked by a simple dipyridyl alkane ligand. Although both complexes bind to DNA with similar affinities, steady-state and time-resolved photophysical studies reveal that the nature of the linker affects the excited state dynamics of the complexes and their DNA photocleavage properties. Quantum-based DFT calculations on these systems offer insights into these effects. While both complexes are live cells permeant, their intracellular localizations are significantly affected by the nature of the linker. Notably, one of the complexes displayed concentration-dependent localization and possesses photophysical properties that are compatible with SIM and STED nanoscopy. This allowed the dynamics of its intracellular localization to be tracked at super resolutions.


Assuntos
Complexos de Coordenação/química , Medicina de Precisão , Rênio/química , Compostos de Rutênio/química , Linhagem Celular , Humanos , Ligantes , Estrutura Molecular , Espectrofotometria Ultravioleta
20.
Langmuir ; 35(31): 10014-10024, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30485112

RESUMO

Phospholipid coated microbubbles are currently in widespread clinical use as ultrasound contrast agents and under investigation for therapeutic applications. Previous studies have demonstrated the importance of the coating nanostructure in determining microbubble stability and its dependence upon both composition and processing method. While the influence of different phospholipids has been widely investigated, the role of other constituents such as emulsifiers has received comparatively little attention. Herein, we present an examination of the impact of polyethylene glycol (PEG) derivatives upon microbubble structure and properties. We present data using both pegylated phospholipids and a fluorescent PEG-40-stearate analogue synthesized in-house to directly observe its distribution in the microbubble coating. We examined microbubbles of clinically relevant sizes, investigating both their surface properties and population size distribution and stability. Domain formation was observed only on the surface of larger microbubbles, which were found to contain a higher concentration of PEG-40-stearate. Lipid analogue dyes were also found to influence domain formation compared with PEG-40-stearate alone. "Squeezing out" of PEG-40-stearate was not observed from any of the microbubble sizes investigated. At ambient temperature, microbubbles formulated with DSPE-PEG(2000) were found to be more stable than those containing PEG-40-stearate. At 37 °C, however, the stability in serum was found to be the same for both formulations, and no difference in acoustic backscatter was detected. This could potentially reduce the cost of PEGylated microbubbles and facilitate simpler attachment of targeting or therapeutic species. However, whether PEG-40-stearate sufficiently shields microbubbles to inhibit physiological clearance mechanisms still requires investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...