Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Brain ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701342

RESUMO

Network neuroscience offers a unique framework to understand the organizational principles of the human brain. Despite recent progress, our understanding of how the brain is modulated by focal lesions remains incomplete. Resection of the temporal lobe is the most effective treatment to control seizures in pharmaco-resistant temporal lobe epilepsy (TLE), making this syndrome a powerful model to study lesional effects on network organization in young and middle-aged adults. Here, we assessed the downstream consequences of a focal lesion and its surgical resection on the brain's structural connectome, and explored how this reorganization relates to clinical variables at the individual patient level. We included adults with pharmaco-resistant TLE (n = 37) who underwent anterior temporal lobectomy between two imaging time points, as well as age- and sex-matched healthy controls who underwent comparable imaging (n = 31). Core to our analysis was the projection of high-dimensional structural connectome data-derived from diffusion MRI tractography from each subject-into lower-dimensional gradients. We then compared connectome gradients in patients relative to controls before surgery, tracked surgically-induced connectome reconfiguration from pre- to postoperative time points, and examined associations to patient-specific clinical and imaging phenotypes. Before surgery, individuals with TLE presented with marked connectome changes in bilateral temporo-parietal regions, reflecting an increased segregation of the ipsilateral anterior temporal lobe from the rest of the brain. Surgery-induced connectome reorganization was localized to this temporo-parietal subnetwork, but primarily involved postoperative integration of contralateral regions with the rest of the brain. Using a partial least-squares analysis, we uncovered a latent clinical-imaging signature underlying this pre- to postoperative connectome reorganization, showing that patients who displayed postoperative integration in bilateral fronto-occipital cortices also had greater preoperative ipsilateral hippocampal atrophy, lower seizure frequency, and secondarily generalized seizures. Our results bridge the effects of focal brain lesions and their surgical resections with large-scale network reorganization and inter-individual clinical variability, thus offering new avenues to examine the fundamental malleability of the human brain.

2.
Epilepsy Behav ; 155: 109722, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643660

RESUMO

OBJECTIVE: Temporal lobe epilepsy (TLE) is typically associated with pathology of the hippocampus, a key structure involved in relational memory, including episodic, semantic, and spatial memory processes. While it is widely accepted that TLE-associated hippocampal alterations underlie memory deficits, it remains unclear whether impairments relate to a specific cognitive domain or multiple ones. METHODS: We administered a recently validated task paradigm to evaluate episodic, semantic, and spatial memory in 24 pharmacoresistant TLE patients and 50 age- and sex-matched healthy controls. We carried out two-way analyses of variance to identify memory deficits in individuals with TLE relative to controls across different relational memory domains, and used partial least squares correlation to identify factors contributing to variations in relational memory performance across both cohorts. RESULTS: Compared to controls, TLE patients showed marked impairments in episodic and spatial memory, with mixed findings in semantic memory. Even when additionally controlling for age, sex, and overall cognitive function, between-group differences persisted along episodic and spatial domains. Moreover, age, diagnostic group, and hippocampal volume were all associated with relational memory behavioral phenotypes. SIGNIFICANCE: Our behavioral findings show graded deficits across relational memory domains in people with TLE, which provides further insights into the complex pattern of cognitive impairment in the condition.

3.
Epilepsia ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642009

RESUMO

In drug-resistant epilepsy, magnetic resonance imaging (MRI) plays a central role in detecting lesions as it offers unmatched spatial resolution and whole-brain coverage. In addition, the last decade has witnessed continued developments in MRI-based computer-aided machine-learning techniques for improved diagnosis and prognosis. In this review, we focus on automated algorithms for the detection of hippocampal sclerosis and focal cortical dysplasia, particularly in cases deemed as MRI negative, with an emphasis on studies with histologically validated data. In addition, we discuss imaging-derived prognostic markers, including response to anti-seizure medication, post-surgical seizure outcome, and cognitive reserves. We also highlight the advantages and limitations of these approaches and discuss future directions toward person-centered care.

4.
Prog Neurobiol ; 236: 102604, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604584

RESUMO

Temporal lobe epilepsy (TLE) is the most common pharmaco-resistant epilepsy in adults. While primarily associated with mesiotemporal pathology, recent evidence suggests that brain alterations in TLE extend beyond the paralimbic epicenter and impact macroscale function and cognitive functions, particularly memory. Using connectome-wide manifold learning and generative models of effective connectivity, we examined functional topography and directional signal flow patterns between large-scale neural circuits in TLE at rest. Studying a multisite cohort of 95 patients with TLE and 95 healthy controls, we observed atypical functional topographies in the former group, characterized by reduced differentiation between sensory and transmodal association cortices, with most marked effects in bilateral temporo-limbic and ventromedial prefrontal cortices. These findings were consistent across all study sites, present in left and right lateralized patients, and validated in a subgroup of patients with histopathological validation of mesiotemporal sclerosis and post-surgical seizure freedom. Moreover, they were replicated in an independent cohort of 30 TLE patients and 40 healthy controls. Further analyses demonstrated that reduced differentiation related to decreased functional signal flow into and out of temporolimbic cortical systems and other brain networks. Parallel analyses of structural and diffusion-weighted MRI data revealed that topographic alterations were independent of TLE-related cortical thinning but partially mediated by white matter microstructural changes that radiated away from paralimbic circuits. Finally, we found a strong association between the degree of functional alterations and behavioral markers of memory dysfunction. Our work illustrates the complex landscape of macroscale functional imbalances in TLE, which can serve as intermediate markers bridging microstructural changes and cognitive impairment.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética , Adulto Jovem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/patologia , Estudos de Coortes , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/patologia
5.
Elife ; 122023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37956092

RESUMO

The hippocampus is an archicortical structure, consisting of subfields with unique circuits. Understanding its microstructure, as proxied by these subfields, can improve our mechanistic understanding of learning and memory and has clinical potential for several neurological disorders. One prominent issue is how to parcellate, register, or retrieve homologous points between two hippocampi with grossly different morphologies. Here, we present a surface-based registration method that solves this issue in a contrast-agnostic, topology-preserving manner. Specifically, the entire hippocampus is first analytically unfolded, and then samples are registered in 2D unfolded space based on thickness, curvature, and gyrification. We demonstrate this method in seven 3D histology samples and show superior alignment with respect to subfields using this method over more conventional registration approaches.


Assuntos
Hipocampo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Lobo Temporal , Técnicas Histológicas
6.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292996

RESUMO

Temporal lobe epilepsy (TLE) is one of the most common pharmaco-resistant epilepsies in adults. While hippocampal pathology is the hallmark of this condition, emerging evidence indicates that brain alterations extend beyond the mesiotemporal epicenter and affect macroscale brain function and cognition. We studied macroscale functional reorganization in TLE, explored structural substrates, and examined cognitive associations. We investigated a multisite cohort of 95 patients with pharmaco-resistant TLE and 95 healthy controls using state-of-the-art multimodal 3T magnetic resonance imaging (MRI). We quantified macroscale functional topographic organization using connectome dimensionality reduction techniques and estimated directional functional flow using generative models of effective connectivity. We observed atypical functional topographies in patients with TLE relative to controls, manifesting as reduced functional differentiation between sensory/motor networks and transmodal systems such as the default mode network, with peak alterations in bilateral temporal and ventromedial prefrontal cortices. TLE-related topographic changes were consistent in all three included sites and reflected reductions in hierarchical flow patterns between cortical systems. Integration of parallel multimodal MRI data indicated that these findings were independent of TLE-related cortical grey matter atrophy, but mediated by microstructural alterations in the superficial white matter immediately beneath the cortex. The magnitude of functional perturbations was robustly associated with behavioral markers of memory function. Overall, this work provides converging evidence for macroscale functional imbalances, contributing microstructural alterations, and their associations with cognitive dysfunction in TLE.

7.
Brain ; 146(9): 3923-3937, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37082950

RESUMO

Temporal lobe epilepsy (TLE), one of the most common pharmaco-resistant epilepsies, is associated with pathology of paralimbic brain regions, particularly in the mesiotemporal lobe. Cognitive dysfunction in TLE is frequent, and particularly affects episodic memory. Crucially, these difficulties challenge the quality of life of patients, sometimes more than seizures, underscoring the need to assess neural processes of cognitive dysfunction in TLE to improve patient management. Our work harnessed a novel conceptual and analytical approach to assess spatial gradients of microstructural differentiation between cortical areas based on high-resolution MRI analysis. Gradients track region-to-region variations in intracortical lamination and myeloarchitecture, serving as a system-level measure of structural and functional reorganization. Comparing cortex-wide microstructural gradients between 21 patients and 35 healthy controls, we observed a reorganization of this gradient in TLE driven by reduced microstructural differentiation between paralimbic cortices and the remaining cortex with marked abnormalities in ipsilateral temporopolar and dorsolateral prefrontal regions. Findings were replicated in an independent cohort. Using an independent post-mortem dataset, we observed that in vivo findings reflected topographical variations in cortical cytoarchitecture. We indeed found that macroscale changes in microstructural differentiation in TLE reflected increased similarity of paralimbic and primary sensory/motor regions. Disease-related transcriptomics could furthermore show specificity of our findings to TLE over other common epilepsy syndromes. Finally, microstructural dedifferentiation was associated with cognitive network reorganization seen during an episodic memory functional MRI paradigm and correlated with interindividual differences in task accuracy. Collectively, our findings showing a pattern of reduced microarchitectural differentiation between paralimbic regions and the remaining cortex provide a structurally-grounded explanation for large-scale functional network reorganization and cognitive dysfunction characteristic of TLE.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/patologia , Qualidade de Vida , Encéfalo/patologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico
8.
Data Brief ; 47: 108999, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36936633

RESUMO

Obtaining precise and detailed parcellations of the human brain has been a major focus of neuroscience research. Here, we present a multimodal dataset, MYATLAS, based on histology-derived myeloarchitectonic parcellations for use with contemporary neuroimaging analyses software. The core of MYATLAS is a novel 3D neocortical, surface-based atlas derived from legacy myeloarchitectonic histology studies. Additionally, we provide digitized quantitative laminar profiles of intracortical myelin content derived from postmortem photometric data, cross-correlated with in vivo myeloarchitectonic features obtained by quantitative MRI mapping. Moreover, congregated, digitized and quality-improved Vogt-Vogt legacy histology data is made available. Finally, to allow for cross-modality correlations, maps of quantitative myelin estimates and corresponding von Economo-Koskinas' cytoarchitectonic features are also included. We share all necessary surface and volume-based registration files as well as shell scripts to facilitate applications of MYATLAS to future in vivo MRI studies.

9.
Epilepsia ; 64(4): 998-1011, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764677

RESUMO

OBJECTIVE: Temporal lobe epilepsy (TLE) is the most common pharmacoresistant epilepsy in adults. Here we profiled local neural function in TLE in vivo, building on prior evidence that has identified widespread structural alterations. Using resting-state functional magnetic resonance imaging (rs-fMRI), we mapped the whole-brain intrinsic neural timescales (INT), which reflect temporal hierarchies of neural processing. Parallel analysis of structural and diffusion MRI data examined associations with TLE-related structural compromise. Finally, we evaluated the clinical utility of INT. METHODS: We studied 46 patients with TLE and 44 healthy controls from two independent sites, and mapped INT changes in patients relative to controls across hippocampal, subcortical, and neocortical regions. We examined region-specific associations to structural alterations and explored the effects of age and epilepsy duration. Supervised machine learning assessed the utility of INT for identifying patients with TLE vs controls and left- vs right-sided seizure onset. RESULTS: Relative to controls, TLE showed marked INT reductions across multiple regions bilaterally, indexing faster changing resting activity, with strongest effects in the ipsilateral medial and lateral temporal regions, and bilateral sensorimotor cortices as well as thalamus and hippocampus. Findings were similar, albeit with reduced effect sizes, when correcting for structural alterations. INT reductions in TLE increased with advancing disease duration, yet findings differed from the aging effects seen in controls. INT-derived classifiers discriminated patients vs controls (balanced accuracy, 5-fold: 76% ± 2.65%; cross-site, 72%-83%) and lateralized the focus in TLE (balanced accuracy, 5-fold: 96% ± 2.10%; cross-site, 95%-97%), with high accuracy and cross-site generalizability. Findings were consistent across both acquisition sites and robust when controlling for motion and several methodological confounds. SIGNIFICANCE: Our findings demonstrate atypical macroscale function in TLE in a topography that extends beyond mesiotemporal epicenters. INT measurements can assist in TLE diagnosis, seizure focus lateralization, and monitoring of disease progression, which emphasizes promising clinical utility.


Assuntos
Epilepsia do Lobo Temporal , Adulto , Humanos , Epilepsia do Lobo Temporal/diagnóstico , Imageamento por Ressonância Magnética/métodos , Hipocampo/diagnóstico por imagem , Lobo Temporal , Convulsões
10.
Brain ; 146(8): 3404-3415, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36852571

RESUMO

Focal cortical dysplasia (FCD) type II is a highly epileptogenic developmental malformation and a common cause of surgically treated drug-resistant epilepsy. While clinical observations suggest frequent occurrence in the frontal lobe, mechanisms for such propensity remain unexplored. Here, we hypothesized that cortex-wide spatial associations of FCD distribution with cortical cytoarchitecture, gene expression and organizational axes may offer complementary insights into processes that predispose given cortical regions to harbour FCD. We mapped the cortex-wide MRI distribution of FCDs in 337 patients collected from 13 sites worldwide. We then determined its associations with (i) cytoarchitectural features using histological atlases by Von Economo and Koskinas and BigBrain; (ii) whole-brain gene expression and spatiotemporal dynamics from prenatal to adulthood stages using the Allen Human Brain Atlas and PsychENCODE BrainSpan; and (iii) macroscale developmental axes of cortical organization. FCD lesions were preferentially located in the prefrontal and fronto-limbic cortices typified by low neuron density, large soma and thick grey matter. Transcriptomic associations with FCD distribution uncovered a prenatal component related to neuroglial proliferation and differentiation, likely accounting for the dysplastic makeup, and a postnatal component related to synaptogenesis and circuit organization, possibly contributing to circuit-level hyperexcitability. FCD distribution showed a strong association with the anterior region of the antero-posterior axis derived from heritability analysis of interregional structural covariance of cortical thickness, but not with structural and functional hierarchical axes. Reliability of all results was confirmed through resampling techniques. Multimodal associations with cytoarchitecture, gene expression and axes of cortical organization indicate that prenatal neurogenesis and postnatal synaptogenesis may be key points of developmental vulnerability of the frontal lobe to FCD. Concordant with a causal role of atypical neuroglial proliferation and growth, our results indicate that FCD-vulnerable cortices display properties indicative of earlier termination of neurogenesis and initiation of cell growth. They also suggest a potential contribution of aberrant postnatal synaptogenesis and circuit development to FCD epileptogenicity.


Assuntos
Displasia Cortical Focal , Malformações do Desenvolvimento Cortical , Humanos , Reprodutibilidade dos Testes , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos
11.
Epileptic Disord ; 24(6): 1087-1094, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36190316

RESUMO

Objective: We aimed to clarify the pathophysiology of epilepsy involving seizures with apparently generalized onset, progressing to focal ictal rhythm through stereotactic EEG (SEEG) implantation, recording, stimulation and high-frequency oscillation (HFO) analysis. Methods: We identified two patients with seizures with bilateral electrographic onset evolving to focal ictal rhythm, who underwent SEEG implantation. Patients had pre-surgical epilepsy work-up, including prolonged video scalp EEG, brain MRI, PET, ictal/interictal SPECT, MEG, and EEG-fMRI prior to SEEG implantation. Results: Both patients had childhood-onset seizures involving behavioural arrest and left versive head and eye deviation, evolving to bilateral tonic-clonic convulsions. Seizures were electrographically preceded by diffuse, bilateral 3-Hz activity resembling absence seizures. Both had suspected focal lesions based on neuroimaging, including 3T MRI and voxel-based post-processing in one patient. Electrode stimulation did not elicit any habitual electroclinical seizures. HFO analysis showed bilateral focal regions with high fast-ripple rates. Significance: "Generalized-to-focal" seizures may occur due to a diffuse, bilateral epileptic network, however, both patients showed ictal evolution from a generalized pattern to a single dominant focus which may explain why the focal aspect of their seizures had a consistent clinical semiology. Patients such as these may have a unique form of generalized epilepsy, but focal/multifocal cerebral abnormalities are also a possibility.


Assuntos
Epilepsias Parciais , Epilepsia Tipo Ausência , Epilepsia Generalizada , Criança , Eletroencefalografia/métodos , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/cirurgia , Humanos , Convulsões/diagnóstico , Convulsões/cirurgia
12.
Neuroimage ; 264: 119656, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183945

RESUMO

The hippocampus is a uniquely infolded allocortical structure in the medial temporal lobe that consists of the microstructurally and functionally distinct subregions: subiculum, cornu ammonis, and dentate gyrus. The hippocampus is a remarkably plastic region that is implicated in learning and memory. At the same time it has been shown that hippocampal subregion volumes are heritable, and that genetic expression varies along a posterior to anterior axis. Here, we studied how a heritable, stable, hippocampal organisation may support its flexible function in healthy adults. Leveraging the twin set-up of the Human Connectome Project with multimodal neuroimaging, we observed that the functional connectivity between hippocampus and cortex was heritable and that microstructure of the hippocampus genetically correlated with cortical microstructure. Moreover, both functional and microstructural organisation could be consistently captured by anterior-to-posterior and medial-to-lateral axes across individuals. However, heritability of functional, relative to microstructural, organisation was found reduced, suggesting individual variation in functional organisation may be explained by experience-driven factors. Last, we demonstrate that structure and function couple along an inherited macroscale organisation, suggesting an interplay of stability and plasticity within the hippocampus. Our study provides new insights on the heritability of the hippocampal of the structure and function within the hippocampal organisation.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Adulto , Humanos , Imageamento por Ressonância Magnética/métodos , Hipocampo/diagnóstico por imagem , Lobo Temporal
13.
Neuroimage ; 263: 119617, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36084859

RESUMO

Building precise and detailed parcellations of anatomically and functionally distinct brain areas has been a major focus in Neuroscience. Pioneer anatomists parcellated the cortical manifold based on extensive histological studies of post-mortem brain, harnessing local variations in cortical cyto- and myeloarchitecture to define areal boundaries. Compared to the cytoarchitectonic field, where multiple neuroimaging studies have recently translated this old legacy data into useful analytical resources, myeloarchitectonics, which parcellate the cortex based on the organization of myelinated fibers, has received less attention. Here, we present the neocortical surface-based myeloarchitectonic atlas based on the histology-derived maps of the Vogt-Vogt school and its 2D translation by Nieuwenhuys. In addition to a myeloarchitectonic parcellation, our package includes intracortical laminar profiles of myelin content based on Vogt-Vogt-Hopf original publications. Histology-derived myelin density mapped on our atlas demonstrated a close overlap with in vivo quantitative MRI markers for myelin and relates to cytoarchitectural features. Complementing the existing battery of approaches for digital cartography, the whole-brain myeloarchitectonic atlas offers an opportunity to validate imaging surrogate markers of myelin in both health and disease.


Assuntos
Mapeamento Encefálico , Córtex Cerebral , Humanos , Córtex Cerebral/diagnóstico por imagem , Mapeamento Encefálico/métodos , Bainha de Mielina , Encéfalo , Imageamento por Ressonância Magnética/métodos
14.
Sci Data ; 9(1): 569, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109562

RESUMO

Multimodal neuroimaging grants a powerful window into the structure and function of the human brain at multiple scales. Recent methodological and conceptual advances have enabled investigations of the interplay between large-scale spatial trends (also referred to as gradients) in brain microstructure and connectivity, offering an integrative framework to study multiscale brain organization. Here, we share a multimodal MRI dataset for Microstructure-Informed Connectomics (MICA-MICs) acquired in 50 healthy adults (23 women; 29.54 ± 5.62 years) who underwent high-resolution T1-weighted MRI, myelin-sensitive quantitative T1 relaxometry, diffusion-weighted MRI, and resting-state functional MRI at 3 Tesla. In addition to raw anonymized MRI data, this release includes brain-wide connectomes derived from (i) resting-state functional imaging, (ii) diffusion tractography, (iii) microstructure covariance analysis, and (iv) geodesic cortical distance, gathered across multiple parcellation scales. Alongside, we share large-scale gradients estimated from each modality and parcellation scale. Our dataset will facilitate future research examining the coupling between brain microstructure, connectivity, and function. MICA-MICs is available on the Canadian Open Neuroscience Platform data portal ( https://portal.conp.ca ) and the Open Science Framework ( https://osf.io/j532r/ ).


Assuntos
Conectoma , Neuroimagem , Adulto , Canadá , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Masculino , Neuroimagem/métodos
15.
Epilepsia ; 63(8): 2081-2095, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35656586

RESUMO

OBJECTIVE: Recent work has shown that people with common epilepsies have characteristic patterns of cortical thinning, and that these changes may be progressive over time. Leveraging a large multicenter cross-sectional cohort, we investigated whether regional morphometric changes occur in a sequential manner, and whether these changes in people with mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE-HS) correlate with clinical features. METHODS: We extracted regional measures of cortical thickness, surface area, and subcortical brain volumes from T1-weighted (T1W) magnetic resonance imaging (MRI) scans collected by the ENIGMA-Epilepsy consortium, comprising 804 people with MTLE-HS and 1625 healthy controls from 25 centers. Features with a moderate case-control effect size (Cohen d ≥ .5) were used to train an event-based model (EBM), which estimates a sequence of disease-specific biomarker changes from cross-sectional data and assigns a biomarker-based fine-grained disease stage to individual patients. We tested for associations between EBM disease stage and duration of epilepsy, age at onset, and antiseizure medicine (ASM) resistance. RESULTS: In MTLE-HS, decrease in ipsilateral hippocampal volume along with increased asymmetry in hippocampal volume was followed by reduced thickness in neocortical regions, reduction in ipsilateral thalamus volume, and finally, increase in ipsilateral lateral ventricle volume. EBM stage was correlated with duration of illness (Spearman ρ = .293, p = 7.03 × 10-16 ), age at onset (ρ = -.18, p = 9.82 × 10-7 ), and ASM resistance (area under the curve = .59, p = .043, Mann-Whitney U test). However, associations were driven by cases assigned to EBM Stage 0, which represents MTLE-HS with mild or nondetectable abnormality on T1W MRI. SIGNIFICANCE: From cross-sectional MRI, we reconstructed a disease progression model that highlights a sequence of MRI changes that aligns with previous longitudinal studies. This model could be used to stage MTLE-HS subjects in other cohorts and help establish connections between imaging-based progression staging and clinical features.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Atrofia/patologia , Biomarcadores , Estudos Transversais , Epilepsia/complicações , Epilepsia do Lobo Temporal/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose/complicações
16.
Eur Neurol ; 85(5): 333-341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35705017

RESUMO

BACKGROUND: Epilepsy is a prevalent chronic condition affecting about 50 million people worldwide. A third of patients with focal epilepsy suffer from seizures unresponsive to medication. Uncontrolled seizures damage the brain, are associated with cognitive decline, and have negative impact on well-being. For these patients, the surgical resection of the brain region that gives rise to seizures is the most effective treatment. SUMMARY: Magnetic resonance imaging (MRI) plays a central role in detecting epileptogenic brain lesions. In this review, we critically discuss advances in neuroimaging acquisition, analytical post-acquisition techniques, and machine leaning methods for the detection of epileptogenic lesions, prediction of clinical outcomes, and identification of disease subtypes. KEY MESSAGE: MRI is a mandatory investigation for diagnosis and treatment of epilepsy, particularly when surgery is being considered. Continuous progress in imaging techniques, combined with machine learning, will continue to push the boundaries of lesion visibility and provide increasingly precise predictors of clinical outcomes. Current efforts aiming at strengthening the competences of epileptologists in neuroimaging will ultimately reduce the need for invasive diagnostics.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/tratamento farmacológico , Epilepsia/diagnóstico , Humanos , Imageamento por Ressonância Magnética/métodos , Convulsões
17.
J Neurosurg Pediatr ; 29(1): 74-82, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624842

RESUMO

OBJECTIVE: In an attempt to improve postsurgical seizure outcomes for poorly defined cases (PDCs) of pediatric focal epilepsy (i.e., those that are not visible or well defined on 3T MRI), the authors modified their presurgical evaluation strategy. Instead of relying on concordance between video-electroencephalography and 3T MRI and using functional imaging and intracranial recording in select cases, the authors systematically used a multimodal, 3-tiered investigation protocol that also involved new collaborations between their hospital, the Montreal Children's Hospital, and the Montreal Neurological Institute. In this study, the authors examined how their new strategy has impacted postsurgical outcomes. They hypothesized that it would improve postsurgical seizure outcomes, with the added benefit of identifying a subset of tests contributing the most. METHODS: Chart review was performed for children with PDCs who underwent resection following the new strategy (i.e., new protocol [NP]), and for the same number who underwent treatment previously (i.e., preprotocol [PP]); ≥ 1-year follow-up was required for inclusion. Well-defined, multifocal, and diffuse hemispheric cases were excluded. Preoperative demographics and clinical characteristics, resection volumes, and pathology, as well as seizure outcomes (Engel class Ia vs > Ia) at 1 year postsurgery and last follow-up were reviewed. RESULTS: Twenty-two consecutive NP patients were compared with 22 PP patients. There was no difference between the two groups for resection volumes, pathology, or preoperative characteristics, except that the NP group underwent more presurgical evaluation tests (p < 0.001). At 1 year postsurgery, 20 of 22 NP patients and 10 of 22 PP patients were seizure free (OR 11.81, 95% CI 2.00-69.68; p = 0.006). Magnetoencephalography and PET/MRI were associated with improved postsurgical seizure outcomes, but both were highly correlated with the protocol group (i.e., independent test effects could not be demonstrated). CONCLUSIONS: A new presurgical evaluation strategy for children with PDCs of focal epilepsy led to improved postsurgical seizure freedom. No individual presurgical evaluation test was independently associated with improved outcome, suggesting that it may be the combined systematic protocol and new interinstitutional collaborations that makes the difference rather than any individual test.


Assuntos
Técnicas de Diagnóstico Neurológico , Epilepsias Parciais/cirurgia , Neurocirurgia/métodos , Cirurgia Assistida por Computador/métodos , Criança , Pré-Escolar , Eletrofisiologia/métodos , Epilepsias Parciais/complicações , Feminino , Humanos , Masculino , Imagem Multimodal/métodos , Neuroimagem/métodos , Convulsões/etiologia , Convulsões/cirurgia , Resultado do Tratamento
18.
Neuropathol Appl Neurobiol ; 48(1): e12758, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34388852

RESUMO

AIMS: The causes of distinct patterns of reduced cortical thickness in the common human epilepsies, detectable on neuroimaging and with important clinical consequences, are unknown. We investigated the underlying mechanisms of cortical thinning using a systems-level analysis. METHODS: Imaging-based cortical structural maps from a large-scale epilepsy neuroimaging study were overlaid with highly spatially resolved human brain gene expression data from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analysis and cell-type enrichment analyses were used to identify differences in cell-type distribution. These differences were followed up in post-mortem brain tissue from humans with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in cortical thinning, cell-type-specific depletion was used in a murine model of acquired epilepsy. RESULTS: We identified elevated fractions of microglia and endothelial cells in regions of reduced cortical thickness. Differentially expressed genes showed enrichment for microglial markers and, in particular, activated microglial states. Analysis of post-mortem brain tissue from humans with epilepsy confirmed excess activated microglia. In the murine model, transient depletion of activated microglia during the early phase of the disease development prevented cortical thinning and neuronal cell loss in the temporal cortex. Although the development of chronic seizures was unaffected, the epileptic mice with early depletion of activated microglia did not develop deficits in a non-spatial memory test seen in epileptic mice not depleted of microglia. CONCLUSIONS: These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control.


Assuntos
Epilepsia , Microglia , Animais , Encéfalo , Células Endoteliais , Epilepsia/metabolismo , Camundongos , Microglia/metabolismo , Convulsões
19.
Brain ; 145(3): 897-908, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-34849619

RESUMO

In drug-resistant temporal lobe epilepsy, precise predictions of drug response, surgical outcome and cognitive dysfunction at an individual level remain challenging. A possible explanation may lie in the dominant 'one-size-fits-all' group-level analytical approaches that does not allow parsing interindividual variations along the disease spectrum. Conversely, analysing inter-patient heterogeneity is increasingly recognized as a step towards person-centred care. Here, we used unsupervised machine learning to estimate latent relations (or disease factors) from 3 T multimodal MRI features [cortical thickness, hippocampal volume, fluid-attenuated inversion recovery (FLAIR), T1/FLAIR, diffusion parameters] representing whole-brain patterns of structural pathology in 82 patients with temporal lobe epilepsy. We assessed the specificity of our approach against age- and sex-matched healthy individuals and a cohort of frontal lobe epilepsy patients with histologically verified focal cortical dysplasia. We identified four latent disease factors variably co-expressed within each patient and characterized by ipsilateral hippocampal microstructural alterations, loss of myelin and atrophy (Factor 1), bilateral paralimbic and hippocampal gliosis (Factor 2), bilateral neocortical atrophy (Factor 3) and bilateral white matter microstructural alterations (Factor 4). Bootstrap analysis and parameter variations supported high stability and robustness of these factors. Moreover, they were not expressed in healthy controls and only negligibly in disease controls, supporting specificity. Supervised classifiers trained on latent disease factors could predict patient-specific drug response in 76 ± 3% and postsurgical seizure outcome in 88 ± 2%, outperforming classifiers that did not operate on latent factor information. Latent factor models predicted inter-patient variability in cognitive dysfunction (verbal IQ: r = 0.40 ± 0.03; memory: r = 0.35 ± 0.03; sequential motor tapping: r = 0.36 ± 0.04), again outperforming baseline learners. Data-driven analysis of disease factors provides a novel appraisal of the continuum of interindividual variability, which is probably determined by multiple interacting pathological processes. Incorporating interindividual variability is likely to improve clinical prognostics.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Epilepsia , Atrofia/patologia , Epilepsia Resistente a Medicamentos/patologia , Epilepsia/patologia , Epilepsia do Lobo Temporal/patologia , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética
20.
Epilepsia ; 62(11): 2589-2603, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34490890

RESUMO

OBJECTIVE: Drug-resistant temporal lobe epilepsy (TLE) is typically associated with hippocampal pathology. However, widespread network alterations are increasingly recognized and suggested to perturb cognitive function in multiple domains. Here we tested (1) whether TLE shows atypical cortical hierarchical organization, differentiating sensory and higher order systems; and (2) whether atypical hierarchy predicts cognitive impairment. METHODS: We studied 72 well-characterized drug-resistant TLE patients and 41 healthy controls, statistically matched for age and sex, using multimodal magnetic resonance imaging analysis and cognitive testing. To model cortical hierarchical organization in vivo, we used a bidirectional stepwise functional connectivity analysis tapping into the differentiation between sensory/unimodal and paralimbic/transmodal cortices. Linear models compared patients to controls. Finally, we assessed associations of functional anomalies to cortical atrophy and microstructural anomalies, as well as clinical and cognitive parameters. RESULTS: Compared to controls, TLE presented with bidirectional disruptions of sensory-paralimbic functional organization. Stepwise connectivity remained segregated within paralimbic and salience networks at the top of the hierarchy, and sensorimotor and dorsal attention at the bottom. Whereas paralimbic segregation was associated with atypical cortical myeloarchitecture and hippocampal atrophy, dysconnectivity of sensorimotor cortices reflected diffuse cortical thinning. The degree of abnormal hierarchical organization in sensory-petal streams covaried, with broad cognitive impairments spanning sensorimotor, attention, fluency, and visuoconstructional ability and memory, and was more marked in patients with longer disease duration and Engel I outcome. SIGNIFICANCE: Our findings show atypical functional integration between paralimbic/transmodal and sensory/unimodal systems in TLE. Differential associations with paralimbic microstructure and sensorimotor atrophy suggest that system-level imbalance likely reflects complementary structural processes, but ultimately accounts for a broad spectrum of cognitive impairments. Hierarchical contextualization of cognitive deficits promises to open new avenues for personalized counseling in TLE.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Atrofia/patologia , Cognição , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...