Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Int J Radiat Oncol Biol Phys ; 118(4): 1081-1093, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866760

RESUMO

PURPOSE: Radiation therapy for brain tumors increases patient survival. Nonetheless, side effects are increasingly reported such as cognitive deficits and fatigue. The etiology of fatigue remains poorly described. Our hypothesis is that the abscopal effects of radiation therapy on skeletal muscle may be involved in fatigue. The present study aims to assess the effect of brain irradiation on skeletal muscles and its relationship with fatigue and to analyze whether physical activity could counteract brain radiation-induced side effects. METHODS AND MATERIALS: Adult Wistar rats were randomly distributed between 4 groups: control (CTL), irradiated (IR), nonirradiated with physical activity (PA), and irradiated with physical activity (IR+PA). IR rats were exposed to a whole-brain irradiation (WBI) of 30 Gy (3 × 10 Gy). Rats subjected to PA underwent sessions of running on a treadmill, 3 times/week for 6 months. The effects of WBI on muscles were evaluated by complementary approaches: behavioral tests (fatigue, locomotion activity), magnetic resonance imaging, and histologic analyses. RESULTS: IR rats displayed a significant fatigue and a reduced locomotor activity at short term compared with the CTL group, which were attenuated with PA at 6 months after WBI. The IR rat's gastrocnemius mass decreased compared with CTL rats, which was reversed by physical activity at 14 days after WBI. Multiparametric magnetic resonance imaging of the skeletal muscle highlighted an alteration of the fiber organization in IR rats as demonstrated by a significant decrease of the mean diffusivity in the gastrocnemius at short term. Alteration of fibers was confirmed by histologic analyses: the number of type I fibers was decreased, whereas that of type IIa fibers was increased in IR animals but not in the IR+PA group. CONCLUSIONS: The data show that WBI induces skeletal muscle damage, which is attenuated by PA. This muscle damage may explain, at least in part, the fatigue of patients treated with radiation therapy.


Assuntos
Lesões por Radiação , Corrida , Humanos , Ratos , Animais , Ratos Wistar , Encéfalo/efeitos da radiação , Lesões por Radiação/etiologia , Músculo Esquelético
2.
Cell Death Dis ; 14(12): 823, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092743

RESUMO

The molecular mechanisms induced by hypoxia are misunderstood in non-small cell lung cancer (NSCLC), and above all the hypoxia and RASSF1A/Hippo signaling relationship. We confirmed that human NSCLC (n = 45) as their brain metastases (BM) counterpart are hypoxic since positive with CAIX-antibody (target gene of Hypoxia-inducible factor (HIF)). A severe and prolonged hypoxia (0.2% O2, 48 h) activated YAP (but not TAZ) in Human Bronchial Epithelial Cells (HBEC) lines by downregulating RASSF1A/kinases Hippo (except for NDR2) regardless their promoter methylation status. Subsequently, the NDR2-overactived HBEC cells exacerbated a HIF-1A, YAP and C-Jun-dependent-amoeboid migration, and mainly, support BM formation. Indeed, NDR2 is more expressed in human tumor of metastatic NSCLC than in human localized NSCLC while NDR2 silencing in HBEC lines (by shRNA) prevented the xenograft formation and growth in a lung cancer-derived BM model in mice. Collectively, our results indicated that NDR2 kinase is over-active in NSCLC by hypoxia and supports BM formation. NDR2 expression is thus a useful biomarker to predict the metastases risk in patients with NSCLC, easily measurable routinely by immunohistochemistry on tumor specimens.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Neoplasias Encefálicas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Pulmonares/patologia
3.
EJNMMI Res ; 13(1): 102, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38006431

RESUMO

BACKGROUND: Brain metastases (BM) are the most frequent malignant brain tumors. The aim of this study was to characterize the tumor microenvironment (TME) of BM and particularly hypoxia and redox state, known to play a role in tumor growth and treatment resistance with multimodal PET and MRI imaging, immunohistochemical and proteomic approaches in a human lung cancer (H2030-BrM3)-derived BM model in rats. RESULTS: First, in vitro studies confirmed that H2030-BrM3 cells respond to hypoxia with increasing expression of HIF-1, HIF-2 and their target genes. Proteomic analyses revealed, among expression changes, proteins associated with metabolism, oxidative stress, metal response and hypoxia signaling in particular in cortical BM. [64Cu][Cu(ATSM)] PET revealed a significant uptake by cortical BM (p < 0.01), while no uptake is observed in striatal BM 23 days after tumor implantation. Pimonidazole, HIF-1α, HIF-2α, CA-IX as well as GFAP, CTR1 and DMT1 immunostainings are positive in both BM. CONCLUSION: Overall, [64Cu][Cu(ATSM)] imaging and proteomic results showed the presence of hypoxia and protein expression changes linked to hypoxia and oxidative stress in BM, which are more pronounced in cortical BM compared to striatal BM. Moreover, it emphasized the interest of [64Cu][Cu(ATSM)] PET to characterize TME of BM and depict inter-metastasis heterogeneity that could be useful to guide treatments.

4.
Med Phys ; 50(6): 3762-3772, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36734667

RESUMO

BACKGROUND: The improvement of in vitro assessment of targeted alpha therapy (reproducibility, comparability of experiments…) requires precise evaluation of the dose delivered to the cells. To answer this need, a previous study proposed an innovative dosimetry method based on α-spectroscopy and a specific deconvolution process to recover the spatial distribution of 212 Pb isotopes inside in vitro culture wells. Nevertheless, although promising, the deconvolution method was time consuming and only tested for a simple isotope decay chain. PURPOSE: The purpose of this work is to propose a new matrix deconvolution method of α spectra based on a constrained-non-negative-maximum-likelihood decomposition, both faster and offering a greater modelling flexibility, allowing to study independently the kinetics of each of the daughter nuclides of complex decay chains (illustrated here with 223 Ra) in in vitro culture wells. METHODS: Firstly, the performance of the new method was fully evaluated through Monte Carlo simulations of in vitro irradiations. Different spatial distributions of 212 Pb and 223 Ra, the corresponding α spectra measured by a silicon detector and the doses delivered to the cells were simulated with Geant4. The deconvolution results were then compared to the simulation results. Secondly, measurements were carried out in culture wells without cells containing 15 kBq of 212 Pb or 9.3 kBq of 223 Ra, placed above silicon detectors recording α spectra in real time. The matrix deconvolution was then applied to determine the spatial and temporal distribution of all α-emitting daughters of studied isotopes. RESULTS: The matrix deconvolution was proved to recover the simulated distribution gradients, ensuring simulated doses within 3 % for both tested radionuclides, with errors on dose normally distributed around the reference value (consequently not exhibiting any bias), even in the case of complex decay chains as 223 Ra. The experimental study of 212 Pb and 223 Ra showed highly inhomogeneous distributions and time evolution of the concentration gradients, consistent with the previous study. Furthermore, it highlighted the complex kinetics of 223 Ra with different distributions of its α-emitting daughters (219 Rn, 215 Po, 215 At, 211 Bi, 211 Po). CONCLUSIONS: This study validates a new deconvolution method, fast and flexible, that proved to be accurate and reliable. This method allowed to reveal the complexity of isotopes kinetics in in vitro experiments, especially with complex decay chains. Experimental dosimetry, necessary to improve reliability of in vitro studies in targeted alpha therapy, is demonstrated to be feasible with the proposed method.


Assuntos
Chumbo , Silício , Reprodutibilidade dos Testes , Radiometria/métodos , Isótopos , Método de Monte Carlo
5.
NMR Biomed ; 36(3): e4858, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36285719

RESUMO

Acute ischemic stroke results in an ischemic core surrounded by a tissue at risk, named the penumbra, which is potentially salvageable. One way to differentiate the tissues is to measure the hypoxia status. The purpose of the current study is to correlate the abnormal brain tissue volume derived from magnetic resonance-based imaging of brain oxygen saturation (St O2 -MRI) to the fluorine-18 fluoromisonidazole ([18 F]FMISO) positron emission tomography (PET) volume for hypoxia imaging validation, and to analyze the ability of St O2 -MRI to depict the different hypoxic tissue types in the acute phase of stroke. In a pertinent model of stroke in the rat, the volume of tissue with decreased St O2 -MRI signal and that with increased uptake of [18 F]FMISO were equivalent and correlated (r = 0.706; p = 0.015). The values of St O2 in the tissue at risk were significantly greater than those quantified in the core of the lesion, and were less than those for healthy tissue (52.3% ± 2.0%; 43.3% ± 1.9%, and 67.9 ± 1.4%, respectively). A threshold value for St O2 of ≈60% as the cut-off for the identification of the tissue at risk was calculated. Tissue volumes with reduced St O2 -MRI correlated with the final lesion (r = 0.964, p < 0.0001). The findings show that the St O2 -MRI approach is sensitive for the detection of hypoxia and for the prediction of the final lesion after stroke. Once validated in acute clinical settings, this approach might be used to enhance the stratification of patients for potential therapeutic interventions.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Animais , Tomografia por Emissão de Pósitrons , Acidente Vascular Cerebral/diagnóstico por imagem , Misonidazol , Hipóxia/diagnóstico por imagem , Imageamento por Ressonância Magnética , Compostos Radiofarmacêuticos
6.
Antioxid Redox Signal ; 35(14): 1176-1206, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34498917

RESUMO

Significance: Redox pioneer Helmut Sies attempted to explain reactive species' challenges faced by organelles, cells, tissues, and organs via three complementary definitions: (i) oxidative stress, that is, the disturbance in the prooxidant-antioxidant defense balance in favor of the prooxidants; (ii) oxidative eustress, the low physiological exposure to prooxidants; and (iii) oxidative distress, the supraphysiological exposure to prooxidants. Recent Advances: Identification, concentration, and interactions are the most important elements to improve our understanding of reactive species in physiology and pathology. In this context, the reactive species interactome (RSI) is a new multilevel redox regulatory system that identifies reactive species families, reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species, and it integrates their interactions with their downstream biological targets. Critical Issues: We propose a united view to fully combine reactive species identification, oxidative eustress and distress, and the RSI system. In this view, we also propose including the forgotten reactive carbonyl species, an increasingly rediscovered reactive species family related to the other reactive families, and key enzymes within the RSI. We focus on brain physiology and pathology to demonstrate why this united view should be considered. Future Directions: More studies are needed for an improved understanding of the contributions of reactive species through their identification, concentration, and interactions, including in the brain. Appreciating the RSI in its entirety should unveil new molecular players and mechanisms in physiology and pathology in the brain and elsewhere.


Assuntos
Estresse Oxidativo , Espécies Reativas de Nitrogênio , Encéfalo , Humanos , Oxirredução , Espécies Reativas de Oxigênio
7.
Front Oncol ; 11: 714514, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504791

RESUMO

Brain metastases (BM) are frequently detected during the follow-up of patients with malignant tumors, particularly in those with advanced disease. Despite a major progress in systemic anti-cancer treatments, the average overall survival of these patients remains limited (6 months from diagnosis). Also, cognitive decline is regularly reported especially in patients treated with whole brain external beam radiotherapy (WBRT), due to the absorbed radiation dose in healthy brain tissue. New targeted therapies, for an earlier and/or more specific treatment of the tumor and its microenvironment, are needed. Radioimmunotherapy (RIT), a combination of a radionuclide to a specific antibody, appears to be a promising tool. Inflammation, which is involved in multiple steps, including the early phase, of BM development is attractive as a relevant target for RIT. This review will focus on the (1) early biomarkers of inflammation in BM pertinent for RIT, (2) state of the art studies on RIT for BM, and (3) the importance of dosimetry to RIT in BM. These two last points will be addressed in comparison to the conventional EBRT treatment, particularly with respect to the balance between tumor control and healthy tissue complications. Finally, because new diagnostic imaging techniques show a potential for the detection of BM at an early stage of the disease, we focus particularly on this therapeutic window.

8.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34358065

RESUMO

To treat colorectal liver metastases, intra-arterial chemotherapies may complete therapeutic arsenal. Drugs using intra-arterially are very heterogeneous. The aim of this study was to select the most efficient drug on a panel of colorectal cancer (CRC) cell lines (Caco-2, HCT 116, HT 29, SW 48, SW 480, SW 620) exposed for 30 min to 12 cytotoxic agents (doxorubicin, epirubicin, idarubicin, 5-FU, raltitrexed, gemcitabine, cisplatin, oxaliplatin, mitomycin C, irinotecan, streptozocin, paclitaxel) at different concentrations. The effect on cell viability was measured using the WST-1 cell viability assay. For each drug and cell line, the IC50 and IC90 were calculated, which respectively correspond to the drug concentration (mg/mL) required to obtain 50% and 90% of cell death. We also quantified the cytotoxic index (CyI90 = C Max/IC90) to compare drug efficacy. The main findings of this study are that idarubicin emerged as the most cytotoxic agent to most of the tested CRC cell lines (Caco-2, HT29, HCT116, SW620 and SW480). Gemcitabine seemed to be the most efficient chemotherapy for SW48. Interestingly, the most commonly used cytotoxic agents in the systemic and intra-arterial treatment of colorectal liver metastasis (CRLM) (oxaliplatin, 5-FU, irinotecan) showed very limited cytotoxicity to all the cell lines.

9.
Sci Rep ; 11(1): 11239, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045576

RESUMO

Lung cancer patients frequently develop brain metastases (BM). Despite aggressive treatment including neurosurgery and external-radiotherapy, overall survival remains poor. There is a pressing need to further characterize factors in the microenvironment of BM that may confer resistance to radiotherapy (RT), such as hypoxia. Here, hypoxia was first evaluated in 28 biopsies from patients with non­small cell lung cancer (NSCLC) BM, using CA-IX immunostaining. Hypoxia characterization (pimonidazole, CA-IX and HIF-1α) was also performed in different preclinical NSCLC BM models induced either by intracerebral injection of tumor cells (H2030-Br3M, H1915) into the cortex and striatum, or intracardial injection of tumor cells (H2030-Br3M). Additionally, [18F]-FMISO-PET and oxygen-saturation-mapping-MRI (SatO2-MRI) were carried out in the intracerebral BM models to further characterize tumor hypoxia and evaluate the potential of Hypoxia-image-guided-RT (HIGRT). The effect of RT on proliferation of BM ([18F]-FLT-PET), tumor volume and overall survival was determined. We showed that hypoxia is a major yet heterogeneous feature of BM from lung cancer both preclinically and clinically. HIGRT, based on hypoxia heterogeneity observed between cortical and striatal metastases in the intracerebrally induced models, showed significant potential for tumor control and animal survival. These results collectively highlight hypoxia as a hallmark of BM from lung cancer and the value of HIGRT in better controlling tumor growth.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Radioterapia Guiada por Imagem , Hipóxia Tumoral , Idoso , Animais , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/secundário , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Ratos , Sistema de Registros
10.
J Nucl Med ; 62(10): 1349-1356, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34016725

RESUMO

Conventional MRI plays a key role in the management of patients with high-grade glioma, but multiparametric MRI and PET tracers could provide further information to better characterize tumor metabolism and heterogeneity by identifying regions having a high risk of recurrence. In this study, we focused on proliferation, hypervascularization, and hypoxia, all factors considered indicative of poor prognosis. They were assessed by measuring uptake of 18F-3'-deoxy-3'-18F-fluorothymidine (18F-FLT), relative cerebral blood volume (rCBV) maps, and uptake of 18F-fluoromisonidazole (18F-FMISO), respectively. For each modality, the volumes and high-uptake subvolumes (hot spots) were semiautomatically segmented and compared with the contrast enhancement (CE) volume on T1-weighted gadolinium-enhanced (T1w-Gd) images, commonly used in the management of patients with glioblastoma. Methods: Dynamic susceptibility contrast-enhanced MRI (31 patients), 18F-FLT PET (20 patients), or 18F-FMISO PET (20 patients), for a total of 31 patients, was performed on preoperative glioblastoma patients. Volumes and hot spots were segmented on SUV maps for 18F-FLT PET (using the fuzzy locally adaptive bayesian algorithm) and 18F-FMISO PET (using a mean contralateral image + 3.3 SDs) and on rCBV maps (using a mean contralateral image + 1.96 SDs) for dynamic susceptibility contrast-enhanced MRI and overlaid on T1w-Gd images. For each modality, the percentages of the peripheral volumes and the peripheral hot spots outside the CE volume were calculated. Results: All tumors showed highly proliferated, hypervascularized, and hypoxic regions. The images also showed pronounced heterogeneity of both tracers regarding their uptake and rCBV maps, within each individual patient. Overlaid volumes on T1w-Gd images showed that some proliferative, hypervascularized, and hypoxic regions extended beyond the CE volume but with marked differences between patients. The ranges of peripheral volume outside the CE volume were 1.6%-155.5%, 1.5%-89.5%, and 3.1%-78.0% for 18F-FLT, rCBV, and 18F-FMISO, respectively. All patients had hyperproliferative hot spots outside the CE volume, whereas hypervascularized and hypoxic hot spots were detected mainly within the enhancing region. Conclusion: Spatial analysis of multiparametric maps with segmented volumes and hot spots provides valuable information to optimize the management and treatment of patients with glioblastoma.


Assuntos
Glioblastoma , Misonidazol/análogos & derivados , Adulto , Humanos , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons
11.
Cancers (Basel) ; 12(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266255

RESUMO

(1) We wanted to assess the impact of Ang2 in RCT-induced changes in the environment of glioblastoma. (2) The effect of Ang2 overexpression in tumor cells was studied in the GL261 syngeneic immunocompetent model of GB in response to fractionated RCT. (3) We showed that RCT combined with Ang2 led to tumor clearance for the GL261-Ang2 group by acting on the tumor cells as well as on both vascular and immune compartments. (4) In vitro, Ang2 overexpression in GL261 cells exposed to RCT promoted senescence and induced robust genomic instability, leading to mitotic death. (5) Coculture experiments of GL261-Ang2 cells with RAW 264.7 cells resulted in a significant increase in macrophage migration, which was abrogated by the addition of soluble Tie2 receptor. (6) Together, these preclinical results showed that, combined with RCT, Ang2 acted in an autocrine manner by increasing GB cell senescence and in a paracrine manner by acting on the innate immune system while modulating the vascular tumor compartment. On this preclinical model, we found that an ectopic expression of Ang2 combined with RCT impedes tumor recurrence.

12.
Biomaterials ; 257: 120249, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32739663

RESUMO

Approaches able to counteract, at least temporarily, hypoxia, a well-known factor of resistance to treatment in solid tumors are highly desirable. Herein, we report the use of nanosized zeolite crystals as hyperoxic/hypercapnic gas carriers for glioblastoma. First, the non-toxic profile of nanosized zeolite crystals in living animals (mice, rats and non-human primates) and in various cell types is presented. Second, the ability of the nanosized zeolites to act as a vasoactive agent for a targeted re-oxygenation of the tumor after intravenous injection is shown. As attested by an MRI protocol, the zeolites were able to increase oxygenation and blood volume specifically within the brain tumor whilst no changes in the healthy-non tumoral brain-were observed. The first proof of concept for the use of metal-containing nanosized zeolites as a tool for vectorization of hyperoxic/hypercapnic gases in glioblastoma is revealed.


Assuntos
Glioblastoma , Zeolitas , Animais , Gases , Imageamento por Ressonância Magnética , Camundongos , Ratos
13.
Cancers (Basel) ; 12(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32718037

RESUMO

Tumor hypoxia is known to limit the efficacy of ionizing radiations, a concept called oxygen enhancement ratio (OER). OER depends on physical factors such as pO2 and linear energy transfer (LET). Biological pathways, such as the hypoxia-inducible transcription factors (HIF), might also modulate the influence of LET on OER. Glioblastoma (GB) is resistant to low-LET radiation (X-rays), due in part to the hypoxic environment in this brain tumor. Here, we aim to evaluate in vitro whether high-LET particles, especially carbon ion radiotherapy (CIRT), can overcome the contribution of hypoxia to radioresistance, and whether HIF-dependent genes, such as erythropoietin (EPO), influence GB sensitivity to CIRT. Hypoxia-induced radioresistance was studied in two human GB cells (U251, GL15) exposed to X-rays or to carbon ion beams with various LET (28, 50, 100 keV/µm), and in genetically-modified GB cells with downregulated EPO signaling. Cell survival, radiobiological parameters, cell cycle, and ERK activation were assessed under those conditions. The results demonstrate that, although CIRT is more efficient than X-rays in GB cells, hypoxia can limit CIRT efficacy in a cell-type manner that may involve differences in ERK activation. Using high-LET carbon beams, or targeting hypoxia-dependent genes such as EPO might reduce the effects of hypoxia.

15.
Int J Mol Sci ; 21(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486205

RESUMO

Glioblastoma (GBM) is one of the most lethal types of tumor due to its high recurrence level in spite of aggressive treatment regimens involving surgery, radiotherapy and chemotherapy. Hypoxia is a feature of GBM, involved in radioresistance, and is known to be at the origin of treatment failure. The aim of this work was to assess the therapeutic potential of a new targeted c-SRC inhibitor molecule, named Si306, in combination with X-rays on the human glioblastoma cell lines, comparing normoxia and hypoxia conditions. For this purpose, the dose modifying factor and oxygen enhancement ratio were calculated to evaluate the Si306 radiosensitizing effect. DNA damage and the repair capability were also studied from the kinetic of γ-H2AX immunodetection. Furthermore, motility processes being supposed to be triggered by hypoxia and irradiation, the role of c-SRC inhibition was also analyzed to evaluate the migration blockage by wound healing assay. Our results showed that inhibition of the c-SRC protein enhances the radiotherapy efficacy both in normoxic and hypoxic conditions. These data open new opportunities for GBM treatment combining radiotherapy with molecularly targeted drugs to overcome radioresistance.


Assuntos
Neoplasias Encefálicas/enzimologia , Glioblastoma/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Quinases da Família src/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Dano ao DNA , Ensaios de Seleção de Medicamentos Antitumorais , Histonas/metabolismo , Humanos , Hipóxia , Cinética , Microscopia de Fluorescência , Recidiva Local de Neoplasia/tratamento farmacológico , Prognóstico , Radiação Ionizante , Radioterapia , Raios X , Quinases da Família src/metabolismo
16.
Neuro Oncol ; 22(3): 357-368, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31538194

RESUMO

BACKGROUND: Brain metastases (BM) develop frequently in patients with breast cancer. Despite the use of external beam radiotherapy (EBRT), the average overall survival is short (6 months from diagnosis). The therapeutic challenge is to deliver molecularly targeted therapy at an early stage when relatively few metastatic tumor cells have invaded the brain. Vascular cell adhesion molecule 1 (VCAM-1), overexpressed by nearby endothelial cells during the early stages of BM development, is a promising target. The aim of this study was to investigate the therapeutic value of targeted alpha-particle radiotherapy, combining lead-212 (212Pb) with an anti-VCAM-1 antibody (212Pb-αVCAM-1). METHODS: Human breast carcinoma cells that metastasize to the brain, MDA-231-Br-GFP, were injected into the left cardiac ventricle of nude mice. Twenty-one days after injection, 212Pb-αVCAM-1 uptake in early BM was determined in a biodistribution study and systemic/brain toxicity was evaluated. Therapeutic efficacy was assessed using MR imaging and histology. Overall survival after 212Pb-αVCAM-1 treatment was compared with that observed after standard EBRT. RESULTS: 212Pb-αVCAM-1 was taken up into early BM with a tumor/healthy brain dose deposition ratio of 6 (5.52e108 and 0.92e108) disintegrations per gram of BM and healthy tissue, respectively. MRI analyses showed a statistically significant reduction in metastatic burden after 212Pb-αVCAM-1 treatment compared with EBRT (P < 0.001), translating to an increase in overall survival of 29% at 40 days post prescription (P < 0.01). No major toxicity was observed. CONCLUSIONS: The present investigation demonstrates that 212Pb-αVCAM-1 specifically accumulates at sites of early BM causing tumor growth inhibition.


Assuntos
Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Radioterapia/métodos , Molécula 1 de Adesão de Célula Vascular/imunologia , Partículas alfa , Animais , Anticorpos/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Radioisótopos de Chumbo/administração & dosagem , Camundongos , Camundongos Nus
17.
Med Phys ; 47(3): 1317-1326, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31838744

RESUMO

PURPOSE: Targeted alpha therapy (TAT) takes advantage of the short-range and high-linear energy transfer of α-particles and is increasingly used, especially for the treatment of metastatic lesions. Nevertheless, dosimetry of α-emitters is challenging for the very same reasons, even for in vitro experiments. Assumptions, such as the uniformity of the distribution of radionuclides in the culture medium, are commonly made, which could have a profound impact on dose calculations. In this study we measured the spatial distribution of α-emitting 212 Pb coupled to an anti-VCAM-1 antibody (212 Pb-αVCAM-1) and its evolution over time in the context of in vitro irradiations. METHODS: Two experimental setups were implemented without cells to measure α-particle count rates and energy spectra in culture medium containing 15 kBq of 212 Pb-α-VCAM-1. Silicon detectors were placed above and below cell culture dishes for 20 h. One of the dishes had a 2.5-µm-thick mylar-base allowing easy detection of the α-particles. Monte Carlo simulations were performed to analyze experimental spectra. Experimental setups were modeled and α-energy spectra were simulated in the silicon detectors for different decay positions in the culture medium. Simulated spectra were then used to deconvolute experimental spectra to determine the spatial distribution of 212 Pb-αVCAM-1 in the medium. This distribution was finally used to calculate the dose deposition in cell culture experiments. RESULTS: Experimental count rates and energy spectra showed differences in measurements taken at the top and the bottom of dishes and temporal variations that did not follow 212 Pb decay. The radionuclide spatial distribution was shown to be composed of a uniform distribution and concentration gradients at the top and the bottom, which were subjected to temporal variations that may be explained by gravity and electrostatic attraction. The absorbed dose in cells calculated from this distribution was compared with the dose expected for a uniform and static distribution and found to be 1.75 times higher, which is highly significant to interpret biological observations. CONCLUSIONS: This study demonstrated that accurate dosimetry of α-emitters requires the experimental determination of radionuclide spatial and temporal distribution and highlighted that in vitro assessment of dose for TAT cannot only rely on a uniform distribution of activity in the culture medium. The reliability and reproducibility of future experiments should benefit from specifically developed dosimetry tools and methods.


Assuntos
Partículas alfa/uso terapêutico , Imunoconjugados/uso terapêutico , Radioisótopos de Chumbo/uso terapêutico , Doses de Radiação , Molécula 1 de Adesão de Célula Vascular/imunologia , Imunoconjugados/imunologia , Método de Monte Carlo , Dosagem Radioterapêutica
18.
EJNMMI Res ; 9(1): 114, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31858290

RESUMO

BACKGROUND: Diacetyl-bis(N4-methylthiosemicarbazone), labeled with 64Cu (64Cu-ATSM) has been suggested as a promising tracer for imaging hypoxia. However, various controversial studies highlighted potential pitfalls that may disable its use as a selective hypoxic marker. They also highlighted that the results may be tumor location dependent. Here, we first analyzed uptake of Cu-ATSM and its less lipophilic counterpart Cu-Cl2 in the tumor over time in an orthotopic glioblastoma model. An in vitro study was also conducted to investigate the hypoxia-dependent copper uptake in tumor cells. We then further performed a comprehensive ex vivo study to compare 64Cu uptake to hypoxic markers, specific cellular reactions, and also transporter expression. METHODS: µPET was performed 14 days (18F-FMISO), 15 days (64Cu-ATSM and 64Cu-Cl2), and 16 days (64Cu-ATSM and 64Cu-Cl2) after C6 cell inoculation. Thereafter, the brains were withdrawn for further autoradiography and immunohistochemistry. C6 cells were also grown in hypoxic workstation to analyze cellular uptake of Cu complexes in different oxygen levels. RESULTS: In vivo results showed that Cu-ASTM and Cu-Cl2 accumulated in hypoxic areas of the tumors. Cu-ATSM also stained, to a lesser extent, non-hypoxic regions, such as regions of astrogliosis, with high expression of copper transporters and in particular DMT-1 and CTR1, and also characterized by the expression of elevated astrogliosis. In vitro results show that 64Cu-ATSM showed an increase in the uptake only in severe hypoxia at 0.5 and 0.2% of oxygen while for 64Cu-Cl2, the cell retention was significantly increased at 5% and 1% of oxygen with no significant rise at lower oxygen percentages. CONCLUSION: In the present study, we show that Cu-complexes undoubtedly accumulate in hypoxic areas of the tumors. This uptake may be the reflection of a direct dependency to a redox metabolism and also a reflection of hypoxic-induced overexpression of transporters. We also show that Cu-ATSM also stained non-hypoxic regions such as astrogliosis.

19.
Int J Mol Sci ; 21(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878191

RESUMO

The resistance of cancer cells to radiotherapy is a major issue in the curative treatment of cancer patients. This resistance can be intrinsic or acquired after irradiation and has various definitions, depending on the endpoint that is chosen in assessing the response to radiation. This phenomenon might be strengthened by the radiosensitivity of surrounding healthy tissues. Sensitive organs near the tumor that is to be treated can be affected by direct irradiation or experience nontargeted reactions, leading to early or late effects that disrupt the quality of life of patients. For several decades, new modalities of irradiation that involve accelerated particles have been available, such as proton therapy and carbon therapy, raising the possibility of specifically targeting the tumor volume. The goal of this review is to examine the up-to-date radiobiological and clinical aspects of hadrontherapy, a discipline that is maturing, with promising applications. We first describe the physical and biological advantages of particles and their application in cancer treatment. The contribution of the microenvironment and surrounding healthy tissues to tumor radioresistance is then discussed, in relation to imaging and accurate visualization of potentially resistant hypoxic areas using dedicated markers, to identify patients and tumors that could benefit from hadrontherapy over conventional irradiation. Finally, we consider combined treatment strategies to improve the particle therapy of radioresistant cancers.


Assuntos
Neoplasias/radioterapia , Radioterapia/métodos , Humanos , Hipóxia , Terapia com Prótons
20.
Neurosci Biobehav Rev ; 107: 602-614, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31553925

RESUMO

A number of neurotoxicity associated with oncological treatments has been reported in non-central nervous system cancers. An expert group presents the state of the art and a guide to help the choice of appropriated tools to assess patient cognition in studies on oncology and neurobehavior in animal models. In addition, current cognitive rehabilitation programs currently under evaluation are also discussed. Cognitive assessments in oncology depend on the research question, study design, cognitive domains, patients' characteristics, psychometric properties of the tests, and whether the tests are supervised or not by a neuropsychologist. Batteries of electronic tests can be proposed, but several of them are characterized by weak psychometric developments. In order to improve the comprehension on the impact of cancer treatments on cognition, new animal models are in development, and would in the future include non-human primate models. By bringing together the skills and practices of oncologists, neurologists, neuropsychologists, neuroscientists, we propose a series of specific tools and tests that accompany the cognitive management of non-CNS cancer patients.


Assuntos
Disfunção Cognitiva/etiologia , Neoplasias/complicações , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/terapia , Humanos , Neoplasias/psicologia , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...