Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 24(5): 2129-2142, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29215789

RESUMO

Brazil is one of the major contributors to land-use change emissions, mostly driven by agricultural expansion for food, feed, and bioenergy feedstock. Policies to avoid deforestation related to private commitments, economic incentives, and other support schemes are expected to improve the effectiveness of current command and control mechanisms increasingly. However, until recently, land tenure was unknown for much of the Brazilian territory, which has undermined the governance of native vegetation and challenged support and incentive mechanisms for avoiding deforestation. We assess the total extent of public governance mechanisms protecting aboveground carbon (AGC) stocks. We constructed a land tenure dataset for the entire nation and modeled the effects and uncertainties of major land-use acts on protecting AGC stocks. Roughly 70% of the AGC stock in Brazil is estimated to be under legal protection, and an additional 20% is expected to be protected after areas in the Amazon with currently undesignated land undergo a tenure regularization. About 30% of the AGC stock is on private land, of which roughly two-thirds are protected. The Cerrado, Amazon, and Caatinga biomes hold about 40%, 30%, and 20% of the unprotected AGC, respectively. Effective conservation of protected and unprotected carbon will depend on successful implementation of the Forest Act, and regularization of land tenure in the Amazon. Policy development that prioritizes unprotected AGC stocks is warranted to promote conservation of native vegetation beyond the legal requirements. However, different biomes and land tenure structures may require different policy settings considering local and regional specifics. Finally, the fate of current AGC stocks relies upon effective implementation of command and control mechanisms, considering that unprotected AGC in native vegetation on private land only accounts for 6.5% of the total AGC stock.


Assuntos
Sequestro de Carbono , Carbono/química , Conservação dos Recursos Naturais/legislação & jurisprudência , Florestas , Agricultura , Brasil , Ecossistema , Propriedade
2.
Environ Sci Technol ; 49(17): 10285-93, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26241204

RESUMO

The 2012 revision of the Brazilian Forest Act changed the relative importance of private and public governance for nature conservation and agricultural production. We present a spatially explicit land-use model for Brazilian agricultural production and nature conservation that considers the spatial distribution of agricultural land suitability, technological and management options, legal command, and control frameworks including the Atlantic Forest Law, the revised Forest Act, and the Amazonian land-titling, "Terra Legal," and also market-driven land use regulations. The model is used to analyze land use allocation under three scenarios with varying priorities among agricultural production and environmental protection objectives. In all scenarios, the legal command and control frameworks were the most important determinants of conservation outcomes, protecting at least 80% of the existing natural vegetation. Situations where such frameworks are not expected to be effective can be identified and targeted for additional conservation (beyond legal requirements) through voluntary actions or self-regulation in response to markets. All scenarios allow for a substantial increase in crop production, using an area 1.5-2.7 times the current cropland area, with much of new cropland occurring on current pastureland. Current public arrangements that promote conservation can, in conjunction with voluntary schemes on private lands where conversion to agriculture is favored, provide important additional nature conservation without conflicting with national agricultural production objectives.


Assuntos
Agricultura/legislação & jurisprudência , Conservação dos Recursos Naturais/legislação & jurisprudência , Controle Social Formal , Brasil , Florestas , Geografia , Modelos Teóricos
3.
Environ Sci Technol ; 48(19): 11379-88, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25207789

RESUMO

The inclusion of ecotoxicity impacts of pesticides in environmental assessments of biobased products has long been hampered by methodological challenges. We expanded the pesticide database and the regional coverage of the pesticide emission model PestLCI v.2.0, combined it with the impact assessment model USEtox, and assessed potential freshwater ecotoxicity impacts (PFEIs) of pesticide use in selected biofuel feedstock production cases, namely: maize (Iowa, US, two cases), rapeseed (Schleswig-Holstein, Germany), Salix (South Central Sweden), soybean (Mato Grosso, Brazil, two cases), sugar cane (São Paulo, Brazil), and wheat (Schleswig-Holstein, Germany). We found that PFEIs caused by pesticide use in feedstock production varied greatly, up to 3 orders of magnitude. Salix has the lowest PFEI per unit of energy output and per unit of cultivated area. Impacts per biofuel unit were 30, 750, and 1000 times greater, respectively, for the sugar cane, wheat and rapeseed cases than for Salix. For maize genetically engineered (GE) to resist glyphosate herbicides and to produce its own insecticidal toxin, maize GE to resist glyphosate, soybeans GE to resist glyphosate and conventional soybeans, the impacts were 110, 270, 305, and 310 times greater than for Salix, respectively. The significance of field and site-specific conditions are discussed, as well as options for reducing negative impacts in biofuel feedstock production.


Assuntos
Biocombustíveis , Magnoliopsida , Modelos Teóricos , Praguicidas/análise , Poluentes Químicos da Água/análise , Brasil , Água Doce , Alemanha , Iowa , Suécia
4.
Glob Chang Biol ; 19(6): 1804-15, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23505132

RESUMO

Does agricultural intensification reduce the area used for agricultural production in Brazil? Census and other data for time periods 1975-1996 and 1996-2006 were processed and analyzed using Geographic Information System and statistical tools to investigate whether and if so, how, changes in yield and stocking rate coincide with changes in cropland and pasture area. Complementary medium-resolution data on total farmland area changes were used in a spatially explicit assessment of the land-use transitions that occurred in Brazil during 1960-2006. The analyses show that in agriculturally consolidated areas (mainly southern and southeastern Brazil), land-use intensification (both on cropland and pastures) coincided with either contraction of both cropland and pasture areas, or cropland expansion at the expense of pastures, both cases resulting in farmland stability or contraction. In contrast, in agricultural frontier areas (i.e., the deforestation zones in central and northern Brazil), land-use intensification coincided with expansion of agricultural lands. These observations provide support for the thesis that (i) technological improvements create incentives for expansion in agricultural frontier areas; and (ii) farmers are likely to reduce their managed acreage only if land becomes a scarce resource. The spatially explicit examination of land-use transitions since 1960 reveals an expansion and gradual movement of the agricultural frontier toward the interior (center-western Cerrado) of Brazil. It also indicates a possible initiation of a reversed trend in line with the forest transition theory, i.e., agricultural contraction and recurring forests in marginally suitable areas in southeastern Brazil, mainly within the Atlantic Forest biome. The significant reduction in deforestation that has taken place in recent years, despite rising food commodity prices, indicates that policies put in place to curb conversion of native vegetation to agriculture land might be effective. This can improve the prospects for protecting native vegetation by investing in agricultural intensification.


Assuntos
Agricultura , Brasil
5.
Environ Sci Technol ; 44(16): 6046-53, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20704198

RESUMO

Brazilian agriculture covers about one-third of the land area and is expected to expand further. We assessed the compliance of present Brazilian agriculture with environmental legislation and identified challenges for agricultural development connected to this legislation. We found (i) minor illegal land use in protected areas under public administration, (ii) a large deficit in legal reserves and protected riparian zones on private farmland, and (iii) large areas of unprotected natural vegetation in regions experiencing agriculture expansion. Achieving full compliance with the environmental laws as they presently stand would require drastic changes in agricultural land use, where large agricultural areas are taken out of production and converted back to natural vegetation. The outcome of a full compliance with environmental legislation might not be satisfactory due to leakage, where pristine unprotected areas become converted to compensate for lost production as current agricultural areas are reconverted to protected natural vegetation. Realizing the desired protection of biodiversity and natural vegetation, while expanding agriculture to meet food and biofuel demand, may require a new approach to environmental protection. New legal and regulatory instruments and the establishment of alternative development models should be considered.


Assuntos
Agricultura/legislação & jurisprudência , Agricultura/tendências , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/tendências , Meio Ambiente , Brasil , Cidades , Geografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA