Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 82(21): 4064-4079.e13, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36332606

RESUMO

MicroRNA (miRNA) and RNA interference (RNAi) pathways rely on small RNAs produced by Dicer endonucleases. Mammalian Dicer primarily supports the essential gene-regulating miRNA pathway, but how it is specifically adapted to miRNA biogenesis is unknown. We show that the adaptation entails a unique structural role of Dicer's DExD/H helicase domain. Although mice tolerate loss of its putative ATPase function, the complete absence of the domain is lethal because it assures high-fidelity miRNA biogenesis. Structures of murine Dicer•-miRNA precursor complexes revealed that the DExD/H domain has a helicase-unrelated structural function. It locks Dicer in a closed state, which facilitates miRNA precursor selection. Transition to a cleavage-competent open state is stimulated by Dicer-binding protein TARBP2. Absence of the DExD/H domain or its mutations unlocks the closed state, reduces substrate selectivity, and activates RNAi. Thus, the DExD/H domain structurally contributes to mammalian miRNA biogenesis and underlies mechanistical partitioning of miRNA and RNAi pathways.


Assuntos
MicroRNAs , Ribonuclease III , Camundongos , Animais , Ribonuclease III/metabolismo , Interferência de RNA , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Transporte/metabolismo , Mamíferos/metabolismo
2.
Life Sci Alliance ; 5(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36271492

RESUMO

Transcription of the ribosomal RNA precursor by RNA polymerase (Pol) I is a major determinant of cellular growth, and dysregulation is observed in many cancer types. Here, we present the purification of human Pol I from cells carrying a genomic GFP fusion on the largest subunit allowing the structural and functional analysis of the enzyme across species. In contrast to yeast, human Pol I carries a single-subunit stalk, and in vitro transcription indicates a reduced proofreading activity. Determination of the human Pol I cryo-EM reconstruction in a close-to-native state rationalizes the effects of disease-associated mutations and uncovers an additional domain that is built into the sequence of Pol I subunit RPA1. This "dock II" domain resembles a truncated HMG box incapable of DNA binding which may serve as a downstream transcription factor-binding platform in metazoans. Biochemical analysis, in situ modelling, and ChIP data indicate that Topoisomerase 2a can be recruited to Pol I via the domain and cooperates with the HMG box domain-containing factor UBF. These adaptations of the metazoan Pol I transcription system may allow efficient release of positive DNA supercoils accumulating downstream of the transcription bubble.


Assuntos
RNA Polimerase I , Precursores de RNA , Humanos , Animais , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , DNA
3.
Nat Commun ; 12(1): 6078, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667177

RESUMO

The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is a regulatory hub for transcription and RNA processing. Here, we identify PHD-finger protein 3 (PHF3) as a regulator of transcription and mRNA stability that docks onto Pol II CTD through its SPOC domain. We characterize SPOC as a CTD reader domain that preferentially binds two phosphorylated Serine-2 marks in adjacent CTD repeats. PHF3 drives liquid-liquid phase separation of phosphorylated Pol II, colocalizes with Pol II clusters and tracks with Pol II across the length of genes. PHF3 knock-out or SPOC deletion in human cells results in increased Pol II stalling, reduced elongation rate and an increase in mRNA stability, with marked derepression of neuronal genes. Key neuronal genes are aberrantly expressed in Phf3 knock-out mouse embryonic stem cells, resulting in impaired neuronal differentiation. Our data suggest that PHF3 acts as a prominent effector of neuronal gene regulation by bridging transcription with mRNA decay.


Assuntos
Neurônios/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , RNA , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos Knockout , Neurônios/química , Fosforilação , Domínios Proteicos , RNA/química , RNA/genética , RNA/metabolismo , RNA Polimerase II/genética , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , Fatores de Transcrição/genética , Transcrição Gênica
4.
Nat Struct Mol Biol ; 24(10): 809-815, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28892040

RESUMO

During transcription, RNA polymerase II (Pol II) associates with the conserved elongation factor DSIF. DSIF renders the elongation complex stable and functions during Pol II pausing and RNA processing. We combined cryo-EM and X-ray crystallography to determine the structure of the mammalian Pol II-DSIF elongation complex at a nominal resolution of 3.4 Å. Human DSIF has a modular structure with two domains forming a DNA clamp, two domains forming an RNA clamp, and one domain buttressing the RNA clamp. The clamps maintain the transcription bubble, position upstream DNA, and retain the RNA transcript in the exit tunnel. The mobile C-terminal region of DSIF is located near exiting RNA, where it can recruit factors for RNA processing. The structure provides insight into the roles of DSIF during mRNA synthesis.


Assuntos
DNA/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos
5.
Nat Commun ; 8: 15741, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28585565

RESUMO

The conserved polymerase-associated factor 1 complex (Paf1C) plays multiple roles in chromatin transcription and genomic regulation. Paf1C comprises the five subunits Paf1, Leo1, Ctr9, Cdc73 and Rtf1, and binds to the RNA polymerase II (Pol II) transcription elongation complex (EC). Here we report the reconstitution of Paf1C from Saccharomyces cerevisiae, and a structural analysis of Paf1C bound to a Pol II EC containing the elongation factor TFIIS. Cryo-electron microscopy and crosslinking data reveal that Paf1C is highly mobile and extends over the outer Pol II surface from the Rpb2 to the Rpb3 subunit. The Paf1-Leo1 heterodimer and Cdc73 form opposite ends of Paf1C, whereas Ctr9 bridges between them. Consistent with the structural observations, the initiation factor TFIIF impairs Paf1C binding to Pol II, whereas the elongation factor TFIIS enhances it. We further show that Paf1C is globally required for normal mRNA transcription in yeast. These results provide a three-dimensional framework for further analysis of Paf1C function in transcription through chromatin.


Assuntos
Complexos Multiproteicos/química , Proteínas Nucleares/química , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Fatores de Elongação da Transcrição/química , Ligação Competitiva , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Reagentes de Ligações Cruzadas/química , Microscopia Crioeletrônica , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformação Proteica , RNA Polimerase II/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
6.
Cell ; 169(1): 120-131.e22, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340337

RESUMO

Transcription initiation at the ribosomal RNA promoter requires RNA polymerase (Pol) I and the initiation factors Rrn3 and core factor (CF). Here, we combine X-ray crystallography and cryo-electron microscopy (cryo-EM) to obtain a molecular model for basal Pol I initiation. The three-subunit CF binds upstream promoter DNA, docks to the Pol I-Rrn3 complex, and loads DNA into the expanded active center cleft of the polymerase. DNA unwinding between the Pol I protrusion and clamp domains enables cleft contraction, resulting in an active Pol I conformation and RNA synthesis. Comparison with the Pol II system suggests that promoter specificity relies on a distinct "bendability" and "meltability" of the promoter sequence that enables contacts between initiation factors, DNA, and polymerase.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Iniciação da Transcrição Genética , Microscopia Crioeletrônica , Cristalografia por Raios X , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Regiões Promotoras Genéticas , RNA Polimerase I/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Transcrição Gênica
7.
Nature ; 529(7587): 551-4, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26789250

RESUMO

RNA polymerase (Pol) II produces messenger RNA during transcription of protein-coding genes in all eukaryotic cells. The Pol II structure is known at high resolution from X-ray crystallography for two yeast species. Structural studies of mammalian Pol II, however, remain limited to low-resolution electron microscopy analysis of human Pol II and its complexes with various proteins. Here we report the 3.4 Å resolution cryo-electron microscopy structure of mammalian Pol II in the form of a transcribing complex comprising DNA template and RNA transcript. We use bovine Pol II, which is identical to the human enzyme except for seven amino-acid residues. The obtained atomic model closely resembles its yeast counterpart, but also reveals unknown features. Binding of nucleic acids to the polymerase involves 'induced fit' of the mobile Pol II clamp and active centre region. DNA downstream of the transcription bubble contacts a conserved 'TPSA motif' in the jaw domain of the Pol II subunit RPB5, an interaction that is apparently already established during transcription initiation. Upstream DNA emanates from the active centre cleft at an angle of approximately 105° with respect to downstream DNA. This position of upstream DNA allows for binding of the general transcription elongation factor DSIF (SPT4-SPT5) that we localize over the active centre cleft in a conserved position on the clamp domain of Pol II. Our results define the structure of mammalian Pol II in its functional state, indicate that previous crystallographic analysis of yeast Pol II is relevant for understanding gene transcription in all eukaryotes, and provide a starting point for a mechanistic analysis of human transcription.


Assuntos
Microscopia Crioeletrônica , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , Elongação da Transcrição Genética , Regulação Alostérica , Motivos de Aminoácidos , Animais , Domínio Catalítico , Bovinos , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Humanos , Modelos Moleculares , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Polimerase II/química , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/ultraestrutura , Saccharomyces cerevisiae/enzimologia , Moldes Genéticos
8.
Nat Rev Mol Cell Biol ; 16(3): 129-43, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25693126

RESUMO

Transcription of eukaryotic protein-coding genes commences with the assembly of a conserved initiation complex, which consists of RNA polymerase II (Pol II) and the general transcription factors, at promoter DNA. After two decades of research, the structural basis of transcription initiation is emerging. Crystal structures of many components of the initiation complex have been resolved, and structural information on Pol II complexes with general transcription factors has recently been obtained. Although mechanistic details await elucidation, available data outline how Pol II cooperates with the general transcription factors to bind to and open promoter DNA, and how Pol II directs RNA synthesis and escapes from the promoter.


Assuntos
Células Eucarióticas/metabolismo , RNA Polimerase II/química , RNA Mensageiro/química , Fatores Genéricos de Transcrição/química , Iniciação da Transcrição Genética , Animais , DNA/química , DNA/metabolismo , Células Eucarióticas/citologia , Humanos , Modelos Moleculares , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , Fatores Genéricos de Transcrição/genética , Fatores Genéricos de Transcrição/metabolismo
10.
J Mol Biol ; 417(5): 387-94, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22343046

RESUMO

The human Mediator complex controls RNA polymerase II (pol II) function in ways that remain incompletely understood. Activator-Mediator binding alters Mediator structure, and these activator-induced structural shifts appear to play key roles in regulating transcription. A recent cryo-electron microscopy (EM) analysis revealed that pol II adopted a stable orientation within a Mediator-pol II-TFIIF assembly in which Mediator was bound to the activation domain of viral protein 16 (VP16). Whereas TFIIF was shown to be important for orienting pol II within this assembly, the potential role of the activator was not assessed. To determine how activator binding might affect pol II orientation, we isolated human Mediator-pol II-TFIIF complexes in which Mediator was not bound to an activator. Cryo-EM analysis of this assembly, coupled with pol II crystal structure docking, revealed that pol II binds Mediator at the same general location; however, in contrast to VP16-bound Mediator, pol II does not appear to stably orient in the absence of an activator. Variability in pol II orientation might be important mechanistically, perhaps to enable sense and antisense transcription at human promoters. Because Mediator interacts extensively with pol II, these results suggest that Mediator structural shifts induced by activator binding help stably orient pol II prior to transcription initiation.


Assuntos
Complexo Mediador/química , Complexo Mediador/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Fatores de Transcrição TFII/química , Fatores de Transcrição TFII/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Complexo Mediador/isolamento & purificação , Complexo Mediador/ultraestrutura , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Multimerização Proteica , RNA Polimerase II/isolamento & purificação , RNA Polimerase II/ultraestrutura , Fatores de Transcrição TFII/isolamento & purificação , Fatores de Transcrição TFII/ultraestrutura
11.
PLoS Biol ; 9(3): e1000603, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21468301

RESUMO

The macromolecular assembly required to initiate transcription of protein-coding genes, known as the Pre-Initiation Complex (PIC), consists of multiple protein complexes and is approximately 3.5 MDa in size. At the heart of this assembly is the Mediator complex, which helps regulate PIC activity and interacts with the RNA polymerase II (pol II) enzyme. The structure of the human Mediator-pol II interface is not well-characterized, whereas attempts to structurally define the Mediator-pol II interaction in yeast have relied on incomplete assemblies of Mediator and/or pol II and have yielded inconsistent interpretations. We have assembled the complete, 1.9 MDa human Mediator-pol II-TFIIF complex from purified components and have characterized its structural organization using cryo-electron microscopy and single-particle reconstruction techniques. The orientation of pol II within this assembly was determined by crystal structure docking and further validated with projection matching experiments, allowing the structural organization of the entire human PIC to be envisioned. Significantly, pol II orientation within the Mediator-pol II-TFIIF assembly can be reconciled with past studies that determined the location of other PIC components relative to pol II itself. Pol II surfaces required for interacting with TFIIB, TFIIE, and promoter DNA (i.e., the pol II cleft) are exposed within the Mediator-pol II-TFIIF structure; RNA exit is unhindered along the RPB4/7 subunits; upstream and downstream DNA is accessible for binding additional factors; and no major structural re-organization is necessary to accommodate the large, multi-subunit TFIIH or TFIID complexes. The data also reveal how pol II binding excludes Mediator-CDK8 subcomplex interactions and provide a structural basis for Mediator-dependent control of PIC assembly and function. Finally, parallel structural analysis of Mediator-pol II complexes lacking TFIIF reveal that TFIIF plays a key role in stabilizing pol II orientation within the assembly.


Assuntos
Complexo Mediador/química , Complexos Multiproteicos/química , RNA Polimerase II/química , Fatores de Transcrição TFII/química , Microscopia Crioeletrônica , Humanos , Espectrometria de Massas , Complexo Mediador/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição TFII/metabolismo
12.
Nat Struct Mol Biol ; 17(6): 753-60, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20453859

RESUMO

It is not well understood how the human Mediator complex, transcription factor IIH and RNA polymerase II (Pol II) work together with activators to initiate transcription. Activator binding alters Mediator structure, yet the functional consequences of such structural shifts remain unknown. The p53 C terminus and its activation domain interact with different Mediator subunits, and we find that each interaction differentially affects Mediator structure; strikingly, distinct p53-Mediator structures differentially affect Pol II activity. Only the p53 activation domain induces the formation of a large pocket domain at the Mediator-Pol II interaction site, and this correlates with activation of stalled Pol II to a productively elongating state. Moreover, we define a Mediator requirement for TFIIH-dependent Pol II C-terminal domain phosphorylation and identify substantial differences in Pol II C-terminal domain processing that correspond to distinct p53-Mediator structural states. Our results define a fundamental mechanism by which p53 activates transcription and suggest that Mediator structural shifts trigger activation of stalled Pol II complexes.


Assuntos
Complexo Mediador/química , Complexo Mediador/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Microscopia Crioeletrônica , Genes p53 , Células HeLa , Humanos , Técnicas In Vitro , Complexo Mediador/genética , Complexo Mediador/ultraestrutura , Modelos Biológicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fator de Transcrição TFIIH/química , Fator de Transcrição TFIIH/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/ultraestrutura
13.
Genes Dev ; 23(4): 439-51, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19240132

RESUMO

The human CDK8 subcomplex (CDK8, cyclin C, Med12, and Med13) negatively regulates transcription in ways not completely defined; past studies suggested CDK8 kinase activity was required for its repressive function. Using a reconstituted transcription system together with recombinant or endogenous CDK8 subcomplexes, we demonstrate that, in fact, Med12 and Med13 are critical for subcomplex-dependent repression, whereas CDK8 kinase activity is not. A hallmark of activated transcription is efficient reinitiation from promoter-bound scaffold complexes that recruit a series of pol II enzymes to the gene. Notably, the CDK8 submodule strongly represses even reinitiation events, suggesting a means to fine tune transcript levels. Structural and biochemical studies confirm the CDK8 submodule binds the Mediator leg/tail domain via the Med13 subunit, and this submodule-Mediator association precludes pol II recruitment. Collectively, these results reveal the CDK8 subcomplex functions as a simple switch that controls the Mediator-pol II interaction to help regulate transcription initiation and reinitiation events. As Mediator is generally required for expression of protein-coding genes, this may reflect a common mechanism by which activated transcription is shut down in human cells.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Cromatina/metabolismo , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes/genética , DNA Polimerase II/metabolismo , Humanos , Complexo Mediador , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...