Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1284478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107002

RESUMO

Sour cherry (Prunus cerasus L.) is an important allotetraploid cherry species that evolved in the Caspian Sea and Black Sea regions from a hybridization of the tetraploid ground cherry (Prunus fruticosa Pall.) and an unreduced pollen of the diploid sweet cherry (P. avium L.) ancestor. Details of when and where the evolution of this species occurred are unclear, as well as the effect of hybridization on the genome structure. To gain insight, the genome of the sour cherry cultivar 'Schattenmorelle' was sequenced using Illumina NovaSeqTM and Oxford Nanopore long-read technologies, resulting in a ~629-Mbp pseudomolecule reference genome. The genome could be separated into two subgenomes, with subgenome PceS_a originating from P. avium and subgenome PceS_f originating from P. fruticosa. The genome also showed size reduction compared to ancestral species and traces of homoeologous sequence exchanges throughout. Comparative analysis confirmed that the genome of sour cherry is segmental allotetraploid and evolved very recently in the past.

2.
Plant J ; 112(4): 897-918, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36073999

RESUMO

Breeding has increasingly altered the genetics of crop plants since the domestication of their wild progenitors. It is postulated that the genetic diversity of elite wheat breeding pools is too narrow to cope with future challenges. In contrast, plant genetic resources (PGRs) of wheat stored in genebanks are valuable sources of unexploited genetic diversity. Therefore, to ensure breeding progress in the future, it is of prime importance to identify the useful allelic diversity available in PGRs and to transfer it into elite breeding pools. Here, a diverse collection consisting of modern winter wheat cultivars and genebank accessions was investigated based on reduced-representation genomic sequencing and an iSelect single nucleotide polymorphism (SNP) chip array. Analyses of these datasets provided detailed insights into population structure, levels of genetic diversity, sources of new allelic diversity, and genomic regions affected by breeding activities. We identified 57 regions representing genomic signatures of selection and 827 regions representing private alleles associated exclusively with genebank accessions. The presence of known functional wheat genes, quantitative trait loci, and large chromosomal modifications, i.e., introgressions from wheat wild relatives, provided initial evidence for putative traits associated within these identified regions. These findings were supported by the results of ontology enrichment analyses. The results reported here will stimulate further research and promote breeding in the future by allowing for the targeted introduction of novel allelic diversity into elite wheat breeding pools.


Assuntos
Pão , Triticum , Triticum/genética , Alelos , Melhoramento Vegetal , Genoma de Planta/genética , Polimorfismo de Nucleotídeo Único/genética
3.
Sci Rep ; 12(1): 1908, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115645

RESUMO

Introgressions from crop wild relatives (CWRs) have been used to introduce beneficial traits into cultivated plants. Introgressions have traditionally been detected using cytological methods. Recently, single nucleotide polymorphism (SNP)-based methods have been proposed to detect introgressions in crosses for which both parents are known. However, for unknown material, no method was available to detect introgressions and predict the putative donor species. Here, we present a method to detect introgressions and the putative donor species. We demonstrate the utility of this method using 10 publicly available wheat genome sequences and identify nine major introgressions. We show that the method can distinguish different introgressions at the same locus. We trace introgressions to early wheat cultivars and show that natural introgressions were utilised in early breeding history and still influence elite lines today. Finally, we provide evidence that these introgressions harbour resistance genes.

4.
Genomics ; 113(6): 4173-4183, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34774678

RESUMO

Cherries are stone fruits and belong to the economically important plant family of Rosaceae with worldwide cultivation of different species. The ground cherry, Prunus fruticosa Pall., is an ancestor of cultivated sour cherry, an important tetraploid cherry species. Here, we present a long read chromosome-level draft genome assembly and related plastid sequences using the Oxford Nanopore Technology PromethION platform and R10.3 pore type. We generated a final consensus genome sequence of 366 Mb comprising eight chromosomes. The N50 scaffold was ~44 Mb with the longest chromosome being 66.5 Mb. The chloroplast and mitochondrial genomes were 158,217 bp and 383,281 bp long, which is in accordance with previously published plastid sequences. This is the first report of the genome of ground cherry (P. fruticosa) sequenced by long read technology only. The datasets obtained from this study provide a foundation for future breeding, molecular and evolutionary analysis in Prunus studies.


Assuntos
Physalis , Prunus , Cromossomos , Physalis/genética , Melhoramento Vegetal , Prunus/genética , Tetraploidia
5.
Front Plant Sci ; 12: 715737, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456955

RESUMO

Rapid cycle breeding uses transgenic early flowering plants as crossbreed parents to facilitate the shortening of breeding programs for perennial crops with long-lasting juvenility. Rapid cycle breeding in apple was established using the transgenic genotype T1190 expressing the BpMADS4 gene of silver birch. In this study, the genomes of T1190 and its non-transgenic wild-type PinS (F1-offspring of 'Pinova' and 'Idared') were sequenced by Illumina short-read sequencing in two separate experiments resulting in a mean sequencing depth of 182× for T1190 and 167× for PinS. The sequencing revealed 8,450 reads, which contain sequences of ≥20 bp identical to the plant transformation vector. These reads were assembled into 125 contigs, which were examined to see whether they contained transgenic insertions or if they are not using a five-step procedure. The sequence of one contig represents the known T-DNA insertion on chromosome 4 of T1190. The sequences of the remaining contigs were either equally present in T1190 and PinS, their part with sequence identity to the vector was equally present in apple reference genomes, or they seem to result from endophytic contaminations rather than from additional transgenic insertions. Therefore, we conclude that the transgenic apple plant T1190 contains only one transgenic insertion, located on chromosome 4, and shows no further partial insertions of the transformation vector. Accession Numbers: JQ974028.1.

6.
Plant J ; 106(1): 8-22, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33577114

RESUMO

Genome editing by RNA-guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent loci can be targeted simultaneously by multiplexing has not been well documented. Here, we developed a toolkit, based on a highly intron-optimized zCas9i gene, which allows assembly of nuclease constructs expressing up to 32 single guide RNAs (sgRNAs). We used this toolkit to explore the limits of multiplexing in two major model species, and report on the isolation of transgene-free octuple (8×) Nicotiana benthamiana and duodecuple (12×) Arabidopsis thaliana mutant lines in a single generation (T1 and T2 , respectively). We developed novel counter-selection markers for N. benthamiana, most importantly Sl-FAST2, comparable to the well-established Arabidopsis seed fluorescence marker, and FCY-UPP, based on the production of toxic 5-fluorouracil in the presence of a precursor. Targeting eight genes with an array of nine different sgRNAs and relying on FCY-UPP for selection of non-transgenic T1 , we identified N. benthamiana mutant lines with astonishingly high efficiencies: All analyzed plants carried mutations in all genes (approximately 112/116 target sites edited). Furthermore, we targeted 12 genes by an array of 24 sgRNAs in A. thaliana. Efficiency was significantly lower in A. thaliana, and our results indicate Cas9 availability is the limiting factor in such higher-order multiplexing applications. We identified a duodecuple mutant line by a combination of phenotypic screening and amplicon sequencing. The resources and results presented provide new perspectives for how multiplexing can be used to generate complex genotypes or to functionally interrogate groups of candidate genes.


Assuntos
Arabidopsis/genética , Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Sistemas CRISPR-Cas/genética , Edição de Genes , Genoma de Planta/genética , Mutação/genética
7.
PLoS One ; 15(12): e0244666, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33373410

RESUMO

Caraway (Carum carvi) is a widespread and frequently used spice and medicinal plant with a long history of cultivation. However, due to ongoing climatic changes, the cultivation is becoming increasingly risky. To secure caraway cultivation in future, timely breeding efforts to develop adapted material are necessary. Analysis of genetic diversity can accompany this process, for instance, by revealing untapped gene pools. Here, we analyzed 137 accessions using genotyping by sequencing (GBS). Hence, we can report a broad overview of population structure and genetic diversity of caraway. Population structure was determined using a principal coordinate analysis, a Bayesian clustering analysis, phylogenetic trees and a neighbor network based on 13,155 SNPs. Genotypic data indicate a clear separation of accessions into two subpopulations, which correlates with the flowering type (annual vs. biennial). Four winter-annual accessions were closer related to biennial accessions. In an analysis of molecular variance, genetic variation between the two subpopulations was 7.84%. In addition, we estimated the genome size for 35 accessions by flow cytometry. An average genome size of 4.282 pg/2C (± 0.0096 S.E.) was estimated. Therefore, we suggest a significantly smaller genome size than stated in literature.


Assuntos
Carum/genética , Variação Genética , Genoma de Planta , Genótipo , Genética Populacional , Técnicas de Genotipagem , Filogenia , Polimorfismo de Nucleotídeo Único
8.
Sci Rep ; 10(1): 16358, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33005026

RESUMO

Although, the Pacific crabapple, Malus fusca, is a hardy and disease resistant species, studies relating to the genetics of its unique traits are very limited partly due to the lack of a genetic map of this interesting wild apple. An accession of M. fusca (MAL0045) of Julius Kühn-Institut collection in Germany is highly resistant to fire blight disease, incited by different strains of the causative pathogen-Erwinia amylovora. This is the most destructive bacterial disease of Malus of which most of the domesticated apples (Malus domestica) are susceptible. Using a scarcely dense genetic map derived from a population of 134 individuals of MAL0045 × 'Idared', the locus (Mfu10) controlling fire blight resistance mapped on linkage group 10 (LG10) and explained up to 66% of the phenotypic variance with different strains. Although the development of robust and tightly linked molecular markers on LG10 through chromosome walking approach led to the identification of a major candidate gene, any minor effect locus remained elusive possibly due to the lack of marker density of the entire genetic map. Therefore, we have developed a dense genetic map of M. fusca using tunable genotyping-by-sequencing (tGBS) approach. Of thousands of de novo SNPs identified, 2677 were informative in M. fusca and 90.5% of these successfully mapped. In addition, integration of SNP data and microsatellite (SSR) data resulted in a final map comprising 17 LGs with 613 loci spanning 1081.35 centi Morgan (cM). This map will serve as a template for mapping using different strains of the pathogen.


Assuntos
Resistência à Doença/genética , Malus/genética , Repetições de Microssatélites/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Erwinia amylovora , Genótipo
9.
Front Plant Sci ; 10: 1133, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608087

RESUMO

Markers linked to agronomic traits are of the prerequisite for molecular breeding. Genotyping-by-sequencing (GBS) data enables to detect small polymorphisms including single nucleotide polymorphisms (SNPs) and short insertions or deletions (InDels) that can be used, for instance, for marker-assisted selection, population genetics, and genome-wide association studies (GWAS). Here, we aim at detecting large chromosomal modifications in barley and wheat based on GBS data. These modifications could be duplications, deletions, substitutions including introgressions as well as alterations of DNA methylation. We demonstrate that GBS coverage analysis is capable to detect Hordeum vulgare/Hordeum bulbosum introgression lines. Furthermore, we identify large chromosomal modifications in barley and wheat collections. Hence, large chromosomal modifications, including introgressions and copy number variations (CNV), can be detected easily and can be used as markers in research and breeding without additional wet-lab experiments.

10.
Mol Breed ; 38(8): 106, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30174538

RESUMO

Breeding for resistance against the destructive fire blight disease of apples is the most sustainable strategy to control the menace of this disease, and has become increasingly important in European apple breeding programs. Since most cultivars are susceptible, wild accessions have been explored for resistance with quantitative trait loci detected in a few wild species. Fire blight resistance of Malus fusca was described following phenotypic evaluations with a C-type strain of Erwinia amylovora, Ea222_JKI, and the detection of a major QTL on chromosome 10 (Mfu10) of this crabapple. The stability of the resistance of M. fusca and Mfu10 has been evaluated using two other strains, the highly aggressive Canadian S-type strain-Ea3049, and the avrRpt2EA mutant-ZYRKD3-1, both of which overcome the resistance of Malus ×robusta 5, a wild species accession with an already described fire blight resistance gene. To pave the way for positional cloning of the underlying fire blight resistance gene of M. fusca, we have fine mapped the QTL region on linkage group 10 using 1888 individuals and 23 newly developed molecular markers, thus delimiting the interval of interest to 0.33 cM between markers FR39G5T7xT7y/FR24N24RP and FRMf7358424/FR46H22. Tightly linked SSR markers are suitable for marker-assisted selection in breeding programs. Furthermore, a bacterial artificial chromosome (BAC) clone spanning FB_Mfu10 region was isolated and sequenced. One putative fire blight resistance candidate gene of M. fusca was predicted on the sequence of BAC 46H22 within the resistance region that encodes B-lectin and serine/threonine kinase domains.

11.
BMC Genomics ; 19(1): 409, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843596

RESUMO

BACKGROUND: Understanding the genetic basis of frost tolerance (FT) in wheat (Triticum aestivum L.) is essential for preventing yield losses caused by frost due to cellular damage, dehydration and reduced metabolism. FT is a complex trait regulated by a number of genes and several gene families. Availability of the wheat genomic sequence opens new opportunities for exploring candidate genes diversity for FT. Therefore, the objectives of this study were to identity SNPs and insertion-deletion (indels) in genes known to be involved in frost tolerance and to perform association genetics analysis of respective SNPs and indels on FT. RESULTS: Here we report on the sequence analysis of 19 candidate genes for FT in wheat assembled using the Chinese Spring IWGSC RefSeq v1.0. Out of these, the tandem duplicated C-repeat binding factors (CBF), i.e. CBF-A3, CBF-A5, CBF-A10, CBF-A13, CBF-A14, CBF-A15, CBF-A18, the vernalisation response gene VRN-A1, VRN-B3, the photoperiod response genes PPD-B1 and PPD-D1 revealed association to FT in 235 wheat cultivars. Within six genes (CBF-A3, CBF-A15, VRN-A1, VRN-B3, PPD-B1 and PPD-D1) amino acid (AA) substitutions in important protein domains were identified. The amino acid substitution effect in VRN-A1 on FT was confirmed and new AA substitutions in CBF-A3, CBF-A15, VRN-B3, PPD-B1 and PPD-D1 located at highly conserved sites were detected. Since these results rely on phenotypic data obtained at five locations in 2 years, detection of significant associations of FT to AA changes in CBF-A3, CBF-A15, VRN-A1, VRN-B3, PPD-B1 and PPD-D1 may be exploited in marker assisted breeding for frost tolerance in winter wheat. CONCLUSIONS: A set of 65 primer pairs for the genes mentioned above from a previous study was BLASTed against the IWGSC RefSeq resulting in the identification of 39 primer combinations covering the full length of 19 genes. This work demonstrates the usefulness of the IWGSC RefSeq in specific primer development for highly conserved gene families in hexaploid wheat and, that a candidate gene association genetics approach based on the sequence data is an efficient tool to identify new alleles of genes important for the response to abiotic stress in wheat.


Assuntos
Substituição de Aminoácidos , Sequência Conservada , Proteínas de Plantas/genética , Triticum/genética , Temperatura Baixa , Haplótipos , Mutação INDEL , Desequilíbrio de Ligação , Fenótipo , Proteínas de Plantas/química , Polimorfismo de Nucleotídeo Único , Triticum/fisiologia
12.
Front Plant Sci ; 8: 1930, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29170675

RESUMO

Terpenes are an important group of secondary metabolites in carrots influencing taste and flavor, and some of them might also play a role as bioactive substances with an impact on human physiology and health. Understanding the genetic and molecular basis of terpene synthases (TPS) involved in the biosynthesis of volatile terpenoids will provide insights for improving breeding strategies aimed at quality traits and for developing specific carrot chemotypes possibly useful for pharmaceutical applications. Hence, a combination of terpene metabolite profiling, genotyping-by-sequencing (GBS), and genome-wide association study (GWAS) was used in this work to get insights into the genetic control of terpene biosynthesis in carrots and to identify several TPS candidate genes that might be involved in the production of specific monoterpenes. In a panel of 85 carrot cultivars and accessions, metabolite profiling was used to identify 31 terpenoid volatile organic compounds (VOCs) in carrot leaves and roots, and a GBS approach was used to provide dense genome-wide marker coverage (>168,000 SNPs). Based on this data, a total of 30 quantitative trait loci (QTLs) was identified for 15 terpenoid volatiles. Most QTLs were detected for the monoterpene compounds ocimene, sabinene, ß-pinene, borneol and bornyl acetate. We identified four genomic regions on three different carrot chromosomes by GWAS which are both associated with high significance (LOD ≥ 5.91) to distinct monoterpenes and to TPS candidate genes, which have been identified by homology-based gene prediction utilizing RNA-seq data. In total, 65 TPS candidate gene models in carrot were identified and assigned to known plant TPS subfamilies with the exception of TPS-d and TPS-h. TPS-b was identified as largest subfamily with 32 TPS candidate genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...