Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 16569, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024136

RESUMO

The glycine receptor (GlyR), a member of the pentameric ligand-gated ion channel family (pLGIC), displays remarkable variations in the affinity and efficacy of the full agonist glycine and the partial agonist taurine depending on the cell system used. Despite detailed insights in the GlyR three-dimensional structure and activation mechanism, little is known about conformational rearrangements induced by these agonists. Here, we characterized the conformational states of the α1 GlyR upon binding of glycine and taurine by microscale thermophoresis expressed in HEK293 cells and Xenopus oocytes after solubilization in amphipathic styrene-maleic acid copolymer nanodiscs. Our results show that glycine and taurine induce different conformational transitions of the GlyR upon ligand binding. In contrast, the variability of agonist affinity is not mediated by an altered conformational change. Thus, our data shed light on specific agonist induced conformational features and mechanisms of pLGIC upon ligand binding determining receptor activation in native environments.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante/fisiologia , Nanoestruturas , Polímeros , Receptores de Glicina , Animais , Glicina/metabolismo , Células HEK293 , Humanos , Oócitos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Sinapses/fisiologia , Transmissão Sináptica , Taurina/metabolismo , Xenopus
2.
ACS Sens ; 5(1): 234-241, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31829017

RESUMO

Combining the stability of solid-state nanopores with the unique sensing properties of biological components in a miniaturized electrical hybrid nanopore device is a challenging approach to advance the sensitivity and selectivity of small-molecule detection in healthcare and environment analytics. Here, we demonstrate a simple method to design an electrical hybrid nanosensor comprising a bacterial binding protein tethered to a solid-state nanopore allowing high-affinity detection of phosphonates. The diverse family of bacterial substrate-binding proteins (SBPs) binds specifically and efficiently to various substances and has been implicated as an ideal biorecognition element for analyte detection in the design of hybrid bionanosensors. Here, we demonstrate that the coupling of the purified phosphonate binding protein PhnD via primary amines to the reactive NHS groups of P(DMAA-co-NMAS) polymers inside a single track-etched nanopore in poly(ethylene terephthalate) (PET) foils results in ligand-specific and concentration-dependent changes in the nanopore current. Application of the phosphonate 2-aminoethylphosphonate (2AEP) or ethylphosphonate (EP) induces a large conformational rearrangement in PnhD around the hinge in a venus flytrap mechanism resulting in a concentration depended on increase of the single pore current with binding affinities of 27 and 373 nM, respectively. Thus, the specificity and stability of this simple hybrid sensor concept combine the advantages of both, the diversity of ligand-specific substrate-binding proteins and solid-state nanopores encouraging further options to produce robust devices amenable to medical or environmental high-throughput-based applications in nanotechnology.


Assuntos
Técnicas Biossensoriais/métodos , Organofosfonatos/química , Proteínas de Transporte , Eletricidade , Humanos , Conformação Molecular , Nanoporos
3.
Neuropharmacology ; 105: 133-141, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26777280

RESUMO

N-methyl-d-aspartate (NMDA) receptors composed of glycine-binding GluN1 and GluN3 subunits function as excitatory glycine receptors that respond to agonist application only with a very low efficacy. Binding of glycine to the high-affinity GluN3 subunits triggers channel opening, whereas glycine binding to the low-affinity GluN1 subunits causes an auto-inhibition of the maximal glycine-inducible receptor current (Imax). Hence, competitive antagonists of the GluN1 subunit strongly potentiate glycine responses of wild type (wt) GluN1/GluN3 receptors. Here, we show that co-expression of N-terminal domain (NTD) deleted GluN1 (GluN1(ΔNTD)) and GluN3 (GluN3(ΔNTD)) subunits in Xenopus oocytes generates GluN1/GluN3 receptors with a large increase in the glycine-inducible Imax accompanied by a strongly impaired GluN1 antagonist-mediated potentiation. Affinity purification after metabolic or surface labeling revealed no differences in subunit stoichiometry and surface expression between wt GluN1/GluN3A and mutant GluN1(ΔNTD)/GluN3A(ΔNTD) receptors, indicating a specific effect of NTD deletions on the efficacy of receptor opening. Notably, GluN1/GluN3A(ΔNTD) receptors showed a similar increase in Imax and a greatly reduced GluN1 antagonist-mediated current potentiation as GluN1(ΔNTD)/GluN3A(ΔNTD) receptors, whereas the glycine-induced currents of GluN1(ΔNTD)/GluN3A receptors resembled those of wt GluN1/GluN3A receptors. Furthermore, oxidative crosslinking of the homophilic GluN3A NTD intersubunit interface in mutant GluN1/GluN3A(R319C) receptors caused both a decrease in the glycine-induced Imax concomitantly with a marked increase in GluN1 antagonist-mediated current potentiation, whilst mutations within the intrasubunit region linking the GluN3A NTD to the ligand binding domain had opposite effects. Together these results show that the GluN3A NTD constitutes a crucial regulatory determinant of GluN1/GluN3A receptor function.


Assuntos
Glicina/fisiologia , Receptores de Glicina/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Sítios de Ligação , Glicina/farmacologia , Estrutura Terciária de Proteína , Receptores de Glicina/agonistas , Receptores de Glicina/química , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...