Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14937, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056073

RESUMO

Preterm newborns are more likely to suffer from infectious diseases at birth compared to children delivered at term. Whether this is due to compromised cellular, humoral, or organ-specific development remains unclear. To begin to define whether maternal-fetal antibody transfer profiles differ across preterm (PT) and fullterm (FT) infants, the overall quantity and functional quality of an array of 24 vaccine-, endemic pathogen-, and common antigen-specific antibodies were assessed across a cohort of 11 PT and 12 term-delivered maternal:infant pairs from birth through week 12. While total IgG levels to influenza, pneumo, measles, rubella, EBV, and RSV were higher in FT newborns, selective Fc-receptor binding antibodies was noted in PT newborns. In fact, near equivalent antibody-effector functions were observed across PT and FT infants, despite significant quantitative differences in transferred antibody levels. Moreover, temporal transfer analysis revealed the selective early transfer of FcRn, FcγR2, and FcγR3 binding antibodies, pointing to differential placental sieving mechanisms across gestation. These data point to selectivity in placental transfer at distinct gestational ages, to ensure that children are endowed with the most robust humoral immunity even if born preterm.


Assuntos
Recém-Nascido Prematuro , Rubéola (Sarampo Alemão) , Anticorpos Antivirais/metabolismo , Criança , Feminino , Idade Gestacional , Humanos , Imunoglobulina G/metabolismo , Lactente , Recém-Nascido , Placenta/metabolismo , Gravidez
2.
Cell ; 184(15): 3884-3898.e11, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34143954

RESUMO

Immune-microbe interactions early in life influence the risk of allergies, asthma, and other inflammatory diseases. Breastfeeding guides healthier immune-microbe relationships by providing nutrients to specialized microbes that in turn benefit the host's immune system. Such bacteria have co-evolved with humans but are now increasingly rare in modern societies. Here we show that a lack of bifidobacteria, and in particular depletion of genes required for human milk oligosaccharide (HMO) utilization from the metagenome, is associated with systemic inflammation and immune dysregulation early in life. In breastfed infants given Bifidobacterium infantis EVC001, which expresses all HMO-utilization genes, intestinal T helper 2 (Th2) and Th17 cytokines were silenced and interferon ß (IFNß) was induced. Fecal water from EVC001-supplemented infants contains abundant indolelactate and B. infantis-derived indole-3-lactic acid (ILA) upregulated immunoregulatory galectin-1 in Th2 and Th17 cells during polarization, providing a functional link between beneficial microbes and immunoregulation during the first months of life.


Assuntos
Bifidobacterium/fisiologia , Sistema Imunitário/crescimento & desenvolvimento , Sistema Imunitário/microbiologia , Antibacterianos/farmacologia , Biomarcadores/metabolismo , Aleitamento Materno , Linfócitos T CD4-Positivos/imunologia , Polaridade Celular , Proliferação de Células , Citocinas/metabolismo , Fezes/química , Fezes/microbiologia , Galectina 1/metabolismo , Microbioma Gastrointestinal , Humanos , Indóis/metabolismo , Recém-Nascido , Inflamação/sangue , Inflamação/genética , Mucosa Intestinal/imunologia , Metaboloma , Leite Humano/química , Oligossacarídeos/metabolismo , Células Th17/imunologia , Células Th2/imunologia , Água
3.
Nat Med ; 25(4): 591-596, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30886409

RESUMO

All circulating immunoglobulin G (IgG) antibodies in human newborns are of maternal origin1 and transferred across the placenta to provide passive immunity until newborn IgG production takes over 15 weeks after birth2. However, maternal IgG can also negatively interfere with newborn vaccine responses3. The concentration of IgG increases sharply during the third trimester of gestation and children delivered extremely preterm are believed to largely lack this passive immunity1,2,4. Antibodies to individual viruses have been reported5-12, but the global repertoire of maternal IgG, its variation in children, and the epitopes targeted are poorly understood. Here, we assess antibodies against 93,904 epitopes from 206 viruses in 32 preterm and 46 term mother-child dyads. We find that extremely preterm children receive comparable repertoires of IgG as term children, albeit at lower absolute concentrations and consequent shorter half-life. Neutralization of the clinically important respiratory syncytial virus (RS-virus) was also comparable until three months of age. These findings have implications for understanding infectious disease susceptibility, vaccine development, and vaccine scheduling in newborn children.


Assuntos
Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/imunologia , Estudos de Coortes , Epitopos/imunologia , Feminino , Humanos , Recém-Nascido , Gravidez , Nascimento Prematuro/imunologia
4.
Cell ; 174(5): 1277-1292.e14, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142345

RESUMO

Epidemiological data suggest that early life exposures are key determinants of immune-mediated disease later in life. Young children are also particularly susceptible to infections, warranting more analyses of immune system development early in life. Such analyses mostly have been performed in mouse models or human cord blood samples, but these cannot account for the complex environmental exposures influencing human newborns after birth. Here, we performed longitudinal analyses in 100 newborn children, sampled up to 4 times during their first 3 months of life. From 100 µL of blood, we analyze the development of 58 immune cell populations by mass cytometry and 267 plasma proteins by immunoassays, uncovering drastic changes not predictable from cord blood measurements but following a stereotypic pattern. Preterm and term children differ at birth but converge onto a shared trajectory, seemingly driven by microbial interactions and hampered by early gut bacterial dysbiosis.


Assuntos
Sangue Fetal/imunologia , Sistema Imunitário/fisiologia , Recém-Nascido Prematuro/imunologia , Inflamação , Linhagem da Célula , Disbiose , Feminino , Microbioma Gastrointestinal , Humanos , Imunoensaio , Recém-Nascido , Leucócitos Mononucleares/metabolismo , Estudos Longitudinais , Masculino , Pais , Fenótipo , Nascimento Prematuro/imunologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA