Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 106: 105242, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39002385

RESUMO

BACKGROUND: Studies on DNA methylation following bariatric surgery have primarily focused on blood cells, while it is unclear to which extend it may reflect DNA methylation profiles in specific metabolically relevant organs such as adipose tissue. Here, we investigated whether adipose tissue depots specific methylation changes after bariatric surgery are mirrored in blood. METHODS: Using Illumina 850K EPIC technology, we analysed genome-wide DNA methylation in paired blood, subcutaneous and omental visceral AT (SAT/OVAT) samples from nine individuals (N = 6 female) with severe obesity pre- and post-surgery. FINDINGS: The numbers and effect sizes of differentially methylated regions (DMRs) post-bariatric surgery were more pronounced in AT (SAT: 12,865 DMRs from -11.5 to 10.8%; OVAT: 14,632 DMRs from -13.7 to 12.8%) than in blood (9267 DMRs from -8.8 to 7.7%). Cross-tissue DMRs implicated immune-related genes. Among them, 49 regions could be validated with similar methylation changes in blood from independent individuals. Fourteen DMRs correlated with differentially expressed genes in AT post bariatric surgery, including downregulation of PIK3AP1 in both SAT and OVAT. DNA methylation age acceleration was significantly higher in AT compared to blood, but remained unaffected after surgery. INTERPRETATION: Concurrent methylation pattern changes in blood and AT, particularly in immune-related genes, suggest blood DNA methylation mirrors AT's inflammatory state post-bariatric surgery. FUNDING: The funding sources are listed in the Acknowledgments section.

2.
Neurol Sci ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877206

RESUMO

INTRODUCTION: Whereas (GCC)-repeats are overrepresented in genic regions, and mutation hotspots, they are largely unexplored with regard to their link with natural selection. Across numerous primate species and tissues, SMAD9 (SMAD Family Member 9) reaches highest level of expression in the human brain. This gene contains a (GCC)-repeat in the interval between + 1 and + 60 of the transcription start site, which is in the high-ranking (GCC)-repeats with respect to length. METHODS: Here we sequenced this (GCC)-repeat in 396 Iranian individuals, consisting of late-onset neurocognitive disorder (NCD) (N = 181) and controls (N = 215). RESULTS: We detected two predominantly abundant alleles of 7 and 9 repeats, forming 96.2% of the allele pool. The (GCC)7/(GCC)9 ratio was in the reverse order in the NCD group versus controls (p = 0.005), resulting from excess of (GCC)7 in the NCD group (p = 0.003) and (GCC)9 in the controls (p = 0.01). Five genotypes, predominantly consisting of (GCC)7 and lacking (GCC)9 were detected in the NCD group only (p = 0.008). The patients harboring those genotypes received the diagnoses of Alzheimer's disease (AD) and vascular dementia (VD). Five genotypes consisting of (GCC)9 and lacking (GCC)7 were detected in the control group only (p = 0.002). The group-specific genotypes formed approximately 4% of the genotype pool in the human samples studied. CONCLUSION: We propose natural selection and a novel locus for late-onset AD and VD at the SMAD9 (GCC)-repeat in humans.

3.
Nat Commun ; 14(1): 3936, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402719

RESUMO

Circular RNAs (circRNAs) are a regulatory RNA class. While cancer-driving functions have been identified for single circRNAs, how they modulate gene expression in cancer is not well understood. We investigate circRNA expression in the pediatric malignancy, neuroblastoma, through deep whole-transcriptome sequencing in 104 primary neuroblastomas covering all risk groups. We demonstrate that MYCN amplification, which defines a subset of high-risk cases, causes globally suppressed circRNA biogenesis directly dependent on the DHX9 RNA helicase. We detect similar mechanisms in shaping circRNA expression in the pediatric cancer medulloblastoma implying a general MYCN effect. Comparisons to other cancers identify 25 circRNAs that are specifically upregulated in neuroblastoma, including circARID1A. Transcribed from the ARID1A tumor suppressor gene, circARID1A promotes cell growth and survival, mediated by direct interaction with the KHSRP RNA-binding protein. Our study highlights the importance of MYCN regulating circRNAs in cancer and identifies molecular mechanisms, which explain their contribution to neuroblastoma pathogenesis.


Assuntos
Neuroblastoma , RNA Circular , Criança , Humanos , RNA Circular/genética , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Linhagem Celular Tumoral , RNA/genética , RNA/metabolismo , Neuroblastoma/metabolismo , Regulação Neoplásica da Expressão Gênica
4.
PLoS One ; 18(3): e0283186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36961799

RESUMO

MicroRNAs (miRNAs) are small non coding RNAs responsible for posttranscriptional regulation of gene expression. Even though almost 2000 precursors have been described so far, additional miRNAs are still being discovered in normal as well as malignant cells. Alike protein coding genes, miRNAs may acquire oncogenic properties in consequence of altered expression or presence of gain or loss of function mutations. In this study we mined datasets from miRNA expression profiling (miRNA-seq) of 7 classic Hodgkin Lymphoma (cHL) cell lines, 10 non-Hodgkin lymphoma (NHL) cell lines and 56 samples of germinal center derived B-cell lymphomas. Our aim was to discover potential novel cHL oncomiRs not reported in miRBase (release 22.1) and expressed in cHL cell lines but no other B-cell lymphomas. We identified six such miRNA candidates in cHL cell lines and verified the expression of two of them encoded at chr2:212678788-212678849 and chr5:168090507-168090561 (GRCh38). Interestingly, we showed that one of the validated miRNAs (located in an intron of the TENM2 gene) is expressed together with its host gene. TENM2 is characterized by hypomethylation and open chromatin around its TSS in cHL cell lines in contrast to NHL cell lines and germinal centre B-cells respectively. It indicates an epigenetic mechanism responsible for aberrant expression of both, the TENM2 gene and the novel miRNA in cHL cell lines. Despite the GO analysis performed with the input of the in silico predicted novel miRNA target genes did not reveal ontologies typically associated with cHL pathogenesis, it pointed to several interesting candidates involved in i.e. lymphopoiesis. These include the lymphoma related BCL11A gene, the IKZF2 gene involved in lymphocyte development or the transcription initiator GTF2H1.


Assuntos
Doença de Hodgkin , Linfoma de Células B , Linfoma não Hodgkin , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doença de Hodgkin/patologia , Linhagem Celular , Centro Germinativo/patologia , Linfoma de Células B/genética , Linfoma não Hodgkin/genética , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo
5.
Nat Commun ; 14(1): 309, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658118

RESUMO

Richter syndrome (RS) is the transformation of chronic lymphocytic leukemia (CLL) into aggressive lymphoma, most commonly diffuse large B-cell lymphoma (DLBCL). We characterize 58 primary human RS samples by genome-wide DNA methylation and whole-transcriptome profiling. Our comprehensive approach determines RS DNA methylation profile and unravels a CLL epigenetic imprint, allowing CLL-RS clonal relationship assessment without the need of the initial CLL tumor DNA. DNA methylation- and transcriptomic-based classifiers were developed, and testing on landmark DLBCL datasets identifies a poor-prognosis, activated B-cell-like DLBCL subset in 111/1772 samples. The classification robustly identifies phenotypes very similar to RS with a specific genomic profile, accounting for 4.3-8.3% of de novo DLBCLs. In this work, RS multi-omics characterization determines oncogenic mechanisms, establishes a surrogate marker for CLL-RS clonal relationship, and provides a clinically relevant classifier for a subset of primary "RS-type DLBCL" with unfavorable prognosis.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Linfócitos B/patologia , Metilação de DNA/genética
6.
Haematologica ; 108(2): 543-554, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35522148

RESUMO

Histone methylation-modifiers, such as EZH2 and KMT2D, are recurrently altered in B-cell lymphomas. To comprehensively describe the landscape of alterations affecting genes encoding histone methylation-modifiers in lymphomagenesis we investigated whole genome and transcriptome data of 186 mature B-cell lymphomas sequenced in the ICGC MMML-Seq project. Besides confirming common alterations of KMT2D (47% of cases), EZH2 (17%), SETD1B (5%), PRDM9 (4%), KMT2C (4%), and SETD2 (4%), also identified by prior exome or RNA-sequencing studies, we here found recurrent alterations to KDM4C in chromosome 9p24, encoding a histone demethylase. Focal structural variation was the main mechanism of KDM4C alterations, and was independent from 9p24 amplification. We also identified KDM4C alterations in lymphoma cell lines including a focal homozygous deletion in a classical Hodgkin lymphoma cell line. By integrating RNA-sequencing and genome sequencing data we predict that KDM4C structural variants result in loss-offunction. By functional reconstitution studies in cell lines, we provide evidence that KDM4C can act as a tumor suppressor. Thus, we show that identification of structural variants in whole genome sequencing data adds to the comprehensive description of the mutational landscape of lymphomas and, moreover, establish KDM4C as a putative tumor suppressive gene recurrently altered in subsets of B-cell derived lymphomas.


Assuntos
Linfoma de Células B , Linfoma , Humanos , Histonas/metabolismo , Histona Desmetilases/genética , Homozigoto , Deleção de Sequência , Linfoma/genética , Linfoma de Células B/genética , Sequenciamento Completo do Genoma , RNA , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona-Lisina N-Metiltransferase/genética
8.
Sci Rep ; 12(1): 15480, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104480

RESUMO

The human SBF1 (SET binding factor 1) gene, alternatively known as MTMR5, is predominantly expressed in the brain, and its epigenetic dysregulation is linked to late-onset neurocognitive disorders (NCDs), such as Alzheimer's disease. This gene contains a (GCC)-repeat at the interval between + 1 and + 60 of the transcription start site (SBF1-202 ENST00000380817.8). We sequenced the SBF1 (GCC)-repeat in a sample of 542 Iranian individuals, consisting of late-onset NCDs (N = 260) and controls (N = 282). While multiple alleles were detected at this locus, the 8 and 9 repeats were predominantly abundant, forming > 95% of the allele pool across the two groups. Among a number of anomalies, the allele distribution was significantly different in the NCD group versus controls (Fisher's exact p = 0.006), primarily as a result of enrichment of the 8-repeat in the former. The genotype distribution departed from the Hardy-Weinberg principle in both groups (p < 0.001), and was significantly different between the two groups (Fisher's exact p = 0.001). We detected significantly low frequency of the 8/9 genotype in both groups, higher frequency of this genotype in the NCD group, and reverse order of 8/8 versus 9/9 genotypes in the NCD group versus controls. Biased heterozygous/heterozygous ratios were also detected for the 6/8 versus 6/9 genotypes (in favor of 6/8) across the human samples studied (Fisher's exact p = 0.0001). Bioinformatics studies revealed that the number of (GCC)-repeats may change the RNA secondary structure and interaction sites at least across human exon 1. This STR was specifically expanded beyond 2-repeats in primates. In conclusion, we report indication of a novel biological phenomenon, in which there is selection against certain heterozygous genotypes at a STR locus in human. We also report different allele and genotype distribution at this STR locus in late-onset NCD versus controls. In view of the location of this STR in the 5' untranslated region, RNA/RNA or RNA/DNA heterodimer formation of the involved genotypes and alternative RNA processing and/or translation should be considered.


Assuntos
Fenômenos Biológicos , Primatas , Regiões 5' não Traduzidas , Alelos , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Irã (Geográfico) , Transtornos Neurocognitivos/genética , Primatas/genética
9.
Genes Chromosomes Cancer ; 61(7): 432-436, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35218115

RESUMO

Deregulation of micro(mi)-RNAs is a common mechanism in tumorigenesis. We investigated the expression of 2083 miRNAs in T-cell prolymphocytic leukemia (T-PLL). Compared to physiologic CD4+ and CD8+ T-cell subsets, 111 miRNAs were differentially expressed in T-PLL. Of these, 33 belonged to miRNA gene clusters linked to cancer. Genomic variants affecting miRNAs were infrequent with the notable exception of copy number aberrations. Remarkably, we found strong upregulation of the miR-200c/-141 cluster in T-PLL to be associated with DNA hypomethylation and active promoter marks. Our findings suggest that copy number aberrations and epigenetic changes could contribute to miRNA deregulation in T-PLL.


Assuntos
Leucemia Prolinfocítica de Células T , MicroRNAs , Carcinogênese/genética , Metilação de DNA/genética , Epigênese Genética , Humanos , Leucemia Prolinfocítica de Células T/genética , MicroRNAs/genética
10.
Gut ; 71(11): 2179-2193, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34598978

RESUMO

OBJECTIVE: Human white adipose tissue (AT) is a metabolically active organ with distinct depot-specific functions. Despite their locations close to the gastrointestinal tract, mesenteric AT and epiploic AT (epiAT) have only scarcely been investigated. Here, we aim to characterise these ATs in-depth and estimate their contribution to alterations in whole-body metabolism. DESIGN: Mesenteric, epiploic, omental and abdominal subcutaneous ATs were collected from 70 patients with obesity undergoing Roux-en-Y gastric bypass surgery. The metabolically well-characterised cohort included nine subjects with insulin sensitive (IS) obesity, whose AT samples were analysed in a multiomics approach, including methylome, transcriptome and proteome along with samples from subjects with insulin resistance (IR) matched for age, sex and body mass index (n=9). Findings implying differences between AT depots in these subgroups were validated in the entire cohort (n=70) by quantitative real-time PCR. RESULTS: While mesenteric AT exhibited signatures similar to those found in the omental depot, epiAT was distinct from all other studied fat depots. Multiomics allowed clear discrimination between the IS and IR states in all tissues. The highest discriminatory power between IS and IR was seen in epiAT, where profound differences in the regulation of developmental, metabolic and inflammatory pathways were observed. Gene expression levels of key molecules involved in AT function, metabolic homeostasis and inflammation revealed significant depot-specific differences with epiAT showing the highest expression levels. CONCLUSION: Multi-omics epiAT signatures reflect systemic IR and obesity subphenotypes distinct from other fat depots. Our data suggest a previously unrecognised role of human epiploic fat in the context of obesity, impaired insulin sensitivity and related diseases.


Assuntos
Resistência à Insulina , Tecido Adiposo/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Obesidade/genética , Obesidade/metabolismo , Proteoma/metabolismo
11.
Blood Adv ; 5(23): 5239-5257, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34625792

RESUMO

The expression of BCL6 in B-cell lymphoma can be deregulated by chromosomal translocations, somatic mutations in the promoter regulatory regions, or reduced proteasome-mediated degradation. FBXO11 was recently identified as a ubiquitin ligase that is involved in the degradation of BCL6, and it is frequently inactivated in lymphoma or other tumors. Here, we show that FBXO11 mutations are found in 23% of patients with Burkitt lymphoma (BL). FBXO11 mutations impaired BCL6 degradation, and the deletion of FBXO11 protein completely stabilized BCL6 levels in human BL cell lines. Conditional deletion of 1 or 2 copies of the FBXO11 gene in mice cooperated with oncogenic MYC and accelerated B-cell lymphoma onset, providing experimental evidence that FBXO11 is a haploinsufficient oncosuppressor in B-cell lymphoma. In wild-type and FBXO11-deficient BL mouse and human cell lines, targeting BCL6 via specific degraders or inhibitors partially impaired lymphoma growth in vitro and in vivo. Inhibition of MYC by the Omomyc mini-protein blocked cell proliferation and increased apoptosis, effects further increased by combined BCL6 targeting. Thus, by validating the functional role of FBXO11 mutations in BL, we further highlight the key role of BCL6 in BL biology and provide evidence that innovative therapeutic approaches, such as BCL6 degraders and direct MYC inhibition, could be exploited as a targeted therapy for BL.


Assuntos
Linfoma de Burkitt , Proteínas F-Box , Linfoma de Células B , Animais , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/genética , Proteínas F-Box/genética , Genes myc , Humanos , Linfoma de Células B/genética , Camundongos , Mutação , Proteína-Arginina N-Metiltransferases/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo
12.
Viruses ; 13(9)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34578345

RESUMO

Surveillance of the evolving SARS-CoV-2 genome combined with epidemiological monitoring and emerging vaccination became paramount tasks to control the pandemic which is rapidly changing in time and space. Genomic surveillance must combine generation and sharing sequence data with appropriate bioinformatics monitoring and analysis methods. We applied molecular portrayal using self-organizing maps machine learning (SOM portrayal) to characterize the diversity of the virus genomes, their mutual relatedness and development since the beginning of the pandemic. The genetic landscape obtained visualizes the relevant mutations in a lineage-specific fashion and provides developmental paths in genetic state space from early lineages towards the variants of concern alpha, beta, gamma and delta. The different genes of the virus have specific footprints in the landscape reflecting their biological impact. SOM portrayal provides a novel option for 'bioinformatics surveillance' of the pandemic, with strong odds regarding visualization, intuitive perception and 'personalization' of the mutational patterns of the virus genomes.


Assuntos
COVID-19/virologia , Evolução Molecular , Variação Genética , Genoma Viral , SARS-CoV-2/genética , COVID-19/epidemiologia , Biologia Computacional , Genômica/métodos , Humanos , Incidência , Mutação , Pandemias , Filogenia , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/classificação
13.
Nucleic Acids Res ; 49(13): 7437-7456, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34197623

RESUMO

Despite its prominence, the mechanisms through which the tumor suppressor p53 regulates most genes remain unclear. Recently, the regulatory factor X 7 (RFX7) emerged as a suppressor of lymphoid neoplasms, but its regulation and target genes mediating tumor suppression remain unknown. Here, we identify a novel p53-RFX7 signaling axis. Integrative analysis of the RFX7 DNA binding landscape and the RFX7-regulated transcriptome in three distinct cell systems reveals that RFX7 directly controls multiple established tumor suppressors, including PDCD4, PIK3IP1, MXD4, and PNRC1, across cell types and is the missing link for their activation in response to p53 and stress. RFX7 target gene expression correlates with cell differentiation and better prognosis in numerous cancer types. Interestingly, we find that RFX7 sensitizes cells to Doxorubicin by promoting apoptosis. Together, our work establishes RFX7's role as a ubiquitous regulator of cell growth and fate determination and a key node in the p53 transcriptional program.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genes Supressores de Tumor , Fatores de Transcrição de Fator Regulador X/metabolismo , Estresse Fisiológico/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose , Diferenciação Celular/genética , Linhagem Celular Tumoral , DNA/metabolismo , Doxorrubicina/farmacologia , Humanos , Camundongos , Neoplasias/genética , Neoplasias/mortalidade , Prognóstico , Regiões Promotoras Genéticas , Fatores de Transcrição de Fator Regulador X/fisiologia , Transdução de Sinais , Transativadores/metabolismo , Transcriptoma
14.
Front Immunol ; 12: 616451, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163463

RESUMO

Gain-of-function mutations of the TLR adaptor and oncoprotein MyD88 drive B cell lymphomagenesis via sustained NF-κB activation. In myeloid cells, both short and sustained TLR activation and NF-κB activation lead to the induction of inhibitory MYD88 splice variants that restrain prolonged NF-κB activation. We therefore sought to investigate whether such a negative feedback loop exists in B cells. Analyzing MYD88 splice variants in normal B cells and different primary B cell malignancies, we observed that MYD88 splice variants in transformed B cells are dominated by the canonical, strongly NF-κB-activating isoform of MYD88 and contain at least three novel, so far uncharacterized signaling-competent splice isoforms. Sustained TLR stimulation in B cells unexpectedly reinforces splicing of NF-κB-promoting, canonical isoforms rather than the 'MyD88s', a negative regulatory isoform reported to be typically induced by TLRs in myeloid cells. This suggests that an essential negative feedback loop restricting TLR signaling in myeloid cells at the level of alternative splicing, is missing in B cells when they undergo proliferation, rendering B cells vulnerable to sustained NF-κB activation and eventual lymphomagenesis. Our results uncover MYD88 alternative splicing as an unappreciated promoter of B cell lymphomagenesis and provide a rationale why oncogenic MYD88 mutations are exclusively found in B cells.


Assuntos
Linfócitos B/fisiologia , Linfoma de Células B/genética , Mutação/genética , Células Mieloides/fisiologia , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Isoformas de Proteínas/genética , Processamento Alternativo , Carcinogênese/genética , Células Cultivadas , Retroalimentação Fisiológica , Humanos , Linfoma de Células B/imunologia , Transdução de Sinais , Receptores Toll-Like/metabolismo
15.
Liver Int ; 41(9): 2101-2111, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33938135

RESUMO

BACKGROUND AND AIMS: In the CENTRAL trial context, we found diverse liver fat dynamics in response to different dietary interventions. Epigenetic mechanisms may contribute to the intraindividual variation. Moreover, genetic factors are involved in developing nonalcoholic fatty-liver disease (NAFLD), a disease reflected by an increase in intrahepatic fat (IHF). In this exploratory analysis, we primarily aimed to examine the effect of lifestyle interventions on DNA-methylation of NAFLD related genes associated with IHF. METHODS: For 120 participants from the CENTRAL trial, an 18-month regimen of either low-fat (LF) or Mediterranean-low carbohydrate (MED/LC) diets, with or without physical activity (PA+/PA-), was instructed. Magnetic resonance imaging was used to measure IHF%, which was analysed for association with CpG specific DNA-methylation levels of 41 selected candidate genes. Single-nucleotide polymorphisms known to be associated with NAFLD within the studied genes were genotyped by TaqMan assays. RESULTS: At baseline, participants (92% men; body mass index = 30.2 kg/m2 ) had mean IHF of 10.7% (59% NAFLD). Baseline-IHF% was inversely correlated with DNA-methylation at individual CpGs within AC074286.1, CRACR2A, A2MP1, FARP1 (P < .05 for all multivariate models). FARP1 rs9584805 showed association with IHF, with the prevalence of NAFLD and baseline methylation level of the CpG site (cg00071727) associated with IHF%. Following 18-month lifestyle intervention, differential DNA-methylation patterns were observed between diets at cg14335324 annotated to A2MP1 (P = .04, LF vs. MED/LC), and differential DNA-methylation between PA groups within AC074286.1, CRACR2A, and FARP1 CpGs (P < .05 for all, PA-vs. PA+). CONCLUSIONS: This study suggests epigenetic markers for IHF and potential epigenetic remodeling after long-term lifestyle interventions.


Assuntos
Fígado , Hepatopatia Gordurosa não Alcoólica , Proteínas de Ligação ao Cálcio , Epigênese Genética , Exercício Físico , Feminino , Humanos , Estilo de Vida , Masculino , Hepatopatia Gordurosa não Alcoólica/genética
16.
Leukemia ; 35(7): 2002-2016, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33953289

RESUMO

B cells have the unique property to somatically alter their immunoglobulin (IG) genes by V(D)J recombination, somatic hypermutation (SHM) and class-switch recombination (CSR). Aberrant targeting of these mechanisms is implicated in lymphomagenesis, but the mutational processes are poorly understood. By performing whole genome and transcriptome sequencing of 181 germinal center derived B-cell lymphomas (gcBCL) we identified distinct mutational signatures linked to SHM and CSR. We show that not only SHM, but presumably also CSR causes off-target mutations in non-IG genes. Kataegis clusters with high mutational density mainly affected early replicating regions and were enriched for SHM- and CSR-mediated off-target mutations. Moreover, they often co-occurred in loci physically interacting in the nucleus, suggesting that mutation hotspots promote increased mutation targeting of spatially co-localized loci (termed hypermutation by proxy). Only around 1% of somatic small variants were in protein coding sequences, but in about half of the driver genes, a contribution of B-cell specific mutational processes to their mutations was found. The B-cell-specific mutational processes contribute to both lymphoma initiation and intratumoral heterogeneity. Overall, we demonstrate that mutational processes involved in the development of gcBCL are more complex than previously appreciated, and that B cell-specific mutational processes contribute via diverse mechanisms to lymphomagenesis.


Assuntos
Genoma/genética , Centro Germinativo/metabolismo , Linfoma de Células B/genética , Mutação/genética , Adulto , Linfócitos B/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Genes de Imunoglobulinas/genética , Células HeLa , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Switching de Imunoglobulina/genética , Células K562 , Células MCF-7 , Hipermutação Somática de Imunoglobulina/genética , Recombinação V(D)J/genética
17.
Clin Epigenetics ; 13(1): 48, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663610

RESUMO

BACKGROUND: DNA methylation age (mAge), a methylation biomarker for the aging process, might serve as a more accurate predictor of morbidity and aging status than chronological age. We evaluated the role of multiple factors, including fat deposition, cardiometabolic risk factors and lifestyle weight-loss intervention, on the deviation of mAge from chronological age (mAge deviation) or 18-month change in mAge (∆mAge). In this sub-study of the CENTRAL magnetic resonance imaging weight-loss trial, we evaluated mAge by a validated 240-CpG-based prediction formula at baseline and after 18-month intervention of either low fat (LF) or mediterranean/low carbohydrate (MED/LC) diets. RESULTS: Among 120 CENTRAL participants with abdominal obesity or dyslipidemia, mAge (mean ± SD: 60.3 ± 7.5 years) was higher than the chronological age (48.6 ± 9.3 years) but strongly correlated (r = 0.93; p = 3.1 × 10-53). Participants in the lowest tertile of mAge deviation from their chronological age had significantly lower waist-circumference, visceral adipose tissue, intrahepatic fat (IHF) content, fasting-glucose and HOMA-IR, as compared with participants in the highest sex-specific residual tertile (p < 0.05 for all). IHF% remained associated with greater mAge deviation after further adjustments (ß = 0.23; p = 0.02). After 18-month weight-loss lifestyle intervention, mAge remained significantly correlated with chronological age (r = 0.94, p = 1.5 × 10-55). mAging occurred, with no difference between lifestyle intervention groups (∆ = 0.9 ± 1.9 years in MED/LC vs. ∆ = 1.3 ± 1.9 years in LF; p = 0.2); however, we observed a mAging attenuation in successful weight losers (> 5% weight loss) vs. weight-loss failures ( ∆ = 0.6 years vs. ∆ = 1.1 years; p = 0.04), and in participants who completed the trial with healthy liver fat content (< 5% IHF) vs. participants with fatty liver (∆ = 0.6 years vs. ∆ = 1.8 years; p = 0.003). Overall, 18 months of weight-loss lifestyle intervention attenuated the mAging of the men, mainly the older, by 7.1 months than the expected (p < 0.05). CONCLUSIONS: Lifestyle weight-loss intervention may attenuate mAging. Deviation of mAge from chronological age might be related to body fat distribution and glycemic control and could indicate biological age, health status and the risk for premature cardiometabolic diseases. TRIAL REGISTRATION: ClinicalTrials.gov NCT01530724. Registered 10 February 2012, https://clinicaltrials.gov/ct2/show/study/NCT01530724 .


Assuntos
Envelhecimento/genética , Distribuição da Gordura Corporal/estatística & dados numéricos , Imageamento por Ressonância Magnética/métodos , Redução de Peso/genética , Adulto , Idoso , Fatores de Risco Cardiometabólico , Ilhas de CpG , Metilação de DNA , Dieta com Restrição de Carboidratos/métodos , Dieta com Restrição de Gorduras/métodos , Dislipidemias/dietoterapia , Dislipidemias/genética , Epigenômica , Fígado Gorduroso/genética , Feminino , Intolerância à Glucose/genética , Nível de Saúde , Humanos , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Obesidade Abdominal/dietoterapia , Obesidade Abdominal/genética
18.
Genome Biol ; 21(1): 299, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33292386

RESUMO

BACKGROUND: The presence of nuclear mitochondrial DNA (numtDNA) has been reported within several nuclear genomes. Next to mitochondrial protein-coding genes, numtDNA sequences also encode for mitochondrial tRNA genes. However, the biological roles of numtDNA remain elusive. RESULTS: Employing in silico analysis, we identify 281 mitochondrial tRNA homologs in the human genome, which we term nimtRNAs (nuclear intronic mitochondrial-derived tRNAs), being contained within introns of 76 nuclear host genes. Despite base changes in nimtRNAs when compared to their mtRNA homologs, a canonical tRNA cloverleaf structure is maintained. To address potential functions of intronic nimtRNAs, we insert them into introns of constitutive and alternative splicing reporters and demonstrate that nimtRNAs promote pre-mRNA splicing, dependent on the number and positioning of nimtRNA genes and splice site recognition efficiency. A mutational analysis reveals that the nimtRNA cloverleaf structure is required for the observed splicing increase. Utilizing a CRISPR/Cas9 approach, we show that a partial deletion of a single endogenous nimtRNALys within intron 28 of the PPFIBP1 gene decreases inclusion of the downstream-located exon 29 of the PPFIBP1 mRNA. By employing a pull-down approach followed by mass spectrometry, a 3'-splice site-associated protein network is identified, including KHDRBS1, which we show directly interacts with nimtRNATyr by an electrophoretic mobility shift assay. CONCLUSIONS: We propose that nimtRNAs, along with associated protein factors, can act as a novel class of intronic splicing regulatory elements in the human genome by participating in the regulation of splicing.


Assuntos
Processamento Alternativo , Íntrons , Mitocôndrias/genética , RNA de Transferência/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sistemas CRISPR-Cas , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Éxons , Humanos , Sítios de Splice de RNA , Splicing de RNA , RNA Mensageiro , RNA de Transferência/genética , Proteínas de Ligação a RNA/genética
19.
Front Microbiol ; 11: 594838, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329479

RESUMO

In all three domains of life, tRNA genes contain introns that must be removed to yield functional tRNA. In archaea and eukarya, the first step of this process is catalyzed by a splicing endonuclease. The consensus structure recognized by the splicing endonuclease is a bulge-helix-bulge (BHB) motif which is also found in rRNA precursors. So far, a systematic analysis to identify all biological substrates of the splicing endonuclease has not been carried out. In this study, we employed CRISPRi to repress expression of the splicing endonuclease in the archaeon Haloferax volcanii to identify all substrates of this enzyme. Expression of the splicing endonuclease was reduced to 1% of its normal level, resulting in a significant extension of lag phase in H. volcanii growth. In the repression strain, 41 genes were down-regulated and 102 were up-regulated. As an additional approach in identifying new substrates of the splicing endonuclease, we isolated and sequenced circular RNAs, which identified excised introns removed from tRNA and rRNA precursors as well as from the 5' UTR of the gene HVO_1309. In vitro processing assays showed that the BHB sites in the 5' UTR of HVO_1309 and in a 16S rRNA-like precursor are processed by the recombinant splicing endonuclease. The splicing endonuclease is therefore an important player in RNA maturation in archaea.

20.
Genome Med ; 12(1): 97, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33198820

RESUMO

BACKGROUND: One of the major challenges in obesity treatment is to explain the high variability in the individual's response to specific dietary and physical activity interventions. With this study, we tested the hypothesis that specific DNA methylation changes reflect individual responsiveness to lifestyle intervention and may serve as epigenetic predictors for a successful weight-loss. METHODS: We conducted an explorative genome-wide DNA methylation analysis in blood samples from 120 subjects (90% men, mean ± SD age = 49 ± 9 years, body mass-index (BMI) = 30.2 ± 3.3 kg/m2) from the 18-month CENTRAL randomized controlled trial who underwent either Mediterranean/low-carbohydrate or low-fat diet with or without physical activity. RESULTS: Analyses comparing male subjects with the most prominent body weight-loss (responders, mean weight change - 16%) vs. non-responders (+ 2.4%) (N = 10 each) revealed significant variation in DNA methylation of several genes including LRRC27, CRISP2, and SLFN12 (all adj. P < 1 × 10-5). Gene ontology analysis indicated that biological processes such as cell adhesion and molecular functions such as calcium ion binding could have an important role in determining the success of interventional therapies in obesity. Epigenome-wide association for relative weight-loss (%) identified 15 CpGs being negatively correlated with weight change after intervention (all combined P < 1 × 10- 4) including new and also known obesity candidates such as NUDT3 and NCOR2. A baseline DNA methylation score better predicted successful weight-loss [area under the curve (AUC) receiver operating characteristic (ROC) = 0.95-1.0] than predictors such as age and BMI (AUC ROC = 0.56). CONCLUSIONS: Body weight-loss following 18-month lifestyle intervention is associated with specific methylation signatures. Moreover, methylation differences in the identified genes could serve as prognostic biomarkers to predict a successful weight-loss therapy and thus contribute to advances in patient-tailored obesity treatment.


Assuntos
Metilação de DNA , Estilo de Vida , Redução de Peso/genética , Hidrolases Anidrido Ácido , Adulto , Índice de Massa Corporal , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Dieta , Epigenômica , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Israel , Masculino , Pessoa de Meia-Idade , Correpressor 2 de Receptor Nuclear , Obesidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...