Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Microbiol Biol Educ ; 25(2): e0006124, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-38975770

RESUMO

Molecular biology, broadly defined as the investigation of complex biomolecules in the laboratory, is a rapidly advancing field and as such the technologies available to investigators are constantly evolving. This constant advancement has obvious advantages because it allows students and researchers to perform more complex experiments in shorter periods of time. One challenge with such a rapidly advancing field is that techniques that had been vital for students to learn how to perform are now not essential for a laboratory scientist. For example, while cloning a gene in the past could have led to a publication and form the bulk of a PhD thesis project, technology has now made this process only a step toward one of these larger goals and can, in many cases, be performed by a company or core facility. As teachers and mentors, it is imperative that we understand that the technologies we teach in the lab and classroom must also evolve to match these advancements. In this perspective, we discuss how the rapid advances in gene synthesis technologies are affecting curriculum and how our classrooms should evolve to ensure our lessons prepare students for the world in which they will do science.

2.
Trends Microbiol ; 32(1): 4-5, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37951769

RESUMO

Candida auris is an emerging human fungal pathogen that can rapidly spread and cause outbreaks of invasive infections. Santana et al. discovered that a novel surface colonization factor (SCF1), and a conserved adhesin, Iff4109, mediates C. auris colonization on abiotic surfaces, skin, and virulence in vivo.


Assuntos
Candida , Candidíase , Humanos , Candidíase/microbiologia , Candida auris , Adesinas Bacterianas , Virulência , Antifúngicos
3.
PLoS Pathog ; 19(10): e1011698, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37856418

RESUMO

Candida auris, is an emerging fungal pathogen that can cause life-threatening infections in humans. Unlike many other Candida species that colonize the intestine, C. auris most efficiently colonizes the skin. Such colonization contaminates the patient's environment and can result in rapid nosocomial transmission. In addition, this transmission can lead to outbreaks of systemic infections that have mortality rates between 40% and 60%. C. auris isolates resistant to all known classes of antifungals have been identified and as such, understanding the underlying biochemical mechanisms of how skin colonization initiates and progresses is critical to developing better therapeutic options. With this review, we briefly summarize what is known about horizontal transmission and current tools used to identify, understand, and control C. auris infections.


Assuntos
Candidíase , Humanos , Candidíase/microbiologia , Candida auris , Candida , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Surtos de Doenças , Testes de Sensibilidade Microbiana
4.
PeerJ ; 11: e15897, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645016

RESUMO

Background: Candida albicans is the most prevalent human fungal pathogen. In immunocompromised individuals, C. albicans can cause serious systemic disease, and patients infected with drug-resistant isolates have few treatment options. The ubiquitin-proteasome system has not been thoroughly characterized in C. albicans. Research from other organisms has shown ubiquitination is important for protein quality control and regulated protein degradation at the endoplasmic reticulum (ER) via ER-associated protein degradation (ERAD). Methods: Here we perform the first characterization, to our knowledge, of ERAD in a human fungal pathogen. We generated functional knockouts of C. albicans genes encoding three proteins predicted to play roles in ERAD, the ubiquitin ligases Hrd1 and Doa10 and the ubiquitin-conjugating enzyme Ubc7. We assessed the fitness of each mutant in the presence of proteotoxic stress, and we used quantitative tandem mass tag mass spectrometry to characterize proteomic alterations in yeast lacking each gene. Results: Consistent with a role in protein quality control, yeast lacking proteins thought to contribute to ERAD displayed hypersensitivity to proteotoxic stress. Furthermore, each mutant displayed distinct proteomic profiles, revealing potential physiological ERAD substrates, co-factors, and compensatory stress response factors. Among candidate ERAD substrates are enzymes contributing to ergosterol synthesis, a known therapeutic vulnerability of C. albicans. Together, our results provide the first description of ERAD function in C. albicans, and, to our knowledge, any pathogenic fungus.


Assuntos
Candida albicans , Degradação Associada com o Retículo Endoplasmático , Humanos , Candida albicans/genética , Proteômica , Proteínas Fúngicas/genética , Ubiquitina , Retículo Endoplasmático/genética
5.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37303958

RESUMO

C. albicans is the most prevalent human fungal pathogen, and can be especially dangerous to immunocompromised individuals. One key aspect of C. albicans virulence is morphological plasticity. C. albicans can undergo a number of distinct morphological changes and these changes are controlled by complex transcriptional networks. The transcription factor Ume6 is an important member of these networks, playing an essential role mediating filamentation. C. albicans , however encodes a second UME6 homolog, UME7 . UME7 is highly conserved in the CTG fungal clade, but the role of UME7 in C. albicans biology is unknown. Here we truncate and delete C. albicans UME7 . We find Ume7 is dispensable for growth and filamentation. We also find that deletion does not have major consequences on virulence or white opaque switching. Our results suggest that under standard laboratory conditions deletion of UME7 does not have large effects on C. albicans phenotype leaving its role in C. albicans biology undefined.

6.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37303960

RESUMO

C. albicans is an important human fungal pathogen and filamentation is essential for its virulence. Ume6 is a transcription factor critical for filamentation. Ume6 is composed of three domains, a long N terminal domain, Zn-finger domain, and a C-terminal domain. Previously, it was shown that the Zn-finger domain is essential for filamentation, as removal of this domain led to a lack of filamentation. However, the role for the C-terminal domain has not been defined. We find deletion of the C-terminal domain leads to a filamentation defect and the defect is not as severe as removal of the Zn-finger or ume6 deletion. We mutated a number of residues in the C-terminal domain to try to identify specific residues important for filamentation, but all of our mutants displayed wild type filamentation. Alpha fold predictions suggest the C-terminal domain forms a single alpha helix that is predicted to interact with the Zn-finger domain via hydrogen bond. Our data suggests the C-terminal domain binds the Zn-finger domain and through this interaction is important for filamentation.

7.
Methods Mol Biol ; 2542: 3-12, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36008653

RESUMO

Cas9-mediated genome editing is one tool investigators can use to study fungal pathogens. Such methodologies allow the investigator to examine how fungal cells differ from human cells and thus potentially identify novel therapeutic targets. In this chapter, we describe how CRISPR-mediated genome editing can be used to edit the genome of the most prevalent human fungal pathogen C. albicans. A cassette encoding a fungal optimized Cas9 nuclease and guide RNA is integrated into the C. albicans genome. The guide RNA targets Cas9 to the complementary genome sequence, and Cas9 cleaves the DNA. A repair template encoding whatever changes the investigator wished to make to the genome is co-transformed with the cassette and repairs the break via homologous recombination, thus introducing the change to the genome. The method we describe enables the researcher to edit the C. albicans genome and then efficiently remove the editing machinery and antibiotic resistance markers. This allows one to sequentially edit the C. albicans genome when multiple changes are desired. In addition, we provide notes that provide guidance on how the described protocols can be altered to meet the demands of the researcher. In these notes, we also describe the recent development of a more flexible CRISPR system that has a relaxed PAM site specificity. These and other advancements make CRISPR-mediated genome editing a practical approach when one needs to genetically alter C. albicans.


Assuntos
Edição de Genes , RNA Guia de Cinetoplastídeos , Sistemas CRISPR-Cas/genética , Candida albicans/genética , Endonucleases/genética , Edição de Genes/métodos , Genoma Fúngico , Humanos , RNA Guia de Cinetoplastídeos/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-34594464

RESUMO

Course-based undergraduate research experiences (CURE) offer the chance for students to experience authentic research investigation in a classroom setting. Such hands-on experiences afford unique opportunities work on a semi-independent research project in an efficient, structured environment. We have developed a CRISPR CURE in which undergraduate and graduate students use in silico, in vitro, and in vivo techniques to edit a fungal genome. During the development of this course, we have found that the asynchronous nature of the CRISPR CURE activities can be disruptive and lead to unproductive class time. To overcome this challenge, we have developed stay-on-task exercises (SOTEs). These short low-stakes assessments provide structured activities that are performed during these asynchronous incubation periods. SOTE activities leverage potentially unproductive class time and complement the CURE learning objectives. We have found SOTEs to be one method of maintaining classroom structure during a CURE. Furthermore, SOTE complexity, length, and subject can be easily modified to match course learning objectives.

9.
Methods Enzymol ; 658: 435-452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34517958

RESUMO

Though over 100 distinct RNA modifications have been identified, the roles for many of these modifications in vivo remain unknown. Genome editing is one tool investigators are using to better understand the roles these modifications play and the consequences of their absence. In this chapter, we describe how CRISPR mediated genome editing can be used to interrogate the process of RNA modification in C. albicans. Furthermore, we discuss how the protocols described can be altered to meet experimental demands. The underlying theory on which these protocols are based are applicable to a variety of model systems. The protocols described utilize the widely used S. pyogenes Cas9, but the field of genome editing is quickly evolving. We discuss the recent developments of more flexible CRISPR systems that can target a greater number of sites in the genome. These and other advancements make CRISPR mediated genome editing a practical methodology to investigate RNA modification.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , RNA/genética , RNA Guia de Cinetoplastídeos/genética
10.
mSphere ; 6(3)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011687

RESUMO

Candida albicans is a human fungal pathogen capable of causing life-threatening infections. The ability to edit the C. albicans genome using CRISPR/Cas9 is an important tool investigators can leverage in their search for novel therapeutic targets. However, wild-type Cas9 requires an NGG protospacer adjacent motif (PAM), leaving many AT-rich regions of DNA inaccessible. A recently described near-PAMless CRISPR system that utilizes the SpRY Cas9 variant can target non-NGG PAM sequences. Using this system as a model, we developed C. albicans CRISPR/SpRY. We tested our system by mutating C. albicansADE2 and show that CRISPR/SpRY can utilize non-NGG PAM sequences in C. albicans Our CRISPR/SpRY system will allow researchers to efficiently modify C. albicans DNA that lacks NGG PAM sequences.IMPORTANCE Genetic modification of the human fungal pathogen Candida albicans allows us to better understand how fungi differ from humans at the molecular level and play essential roles in the development of therapeutics. CRISPR/Cas9-mediated genome editing systems can be used to introduce site-specific mutations to C. albicans However, wild-type Cas9 is limited by the requirement of an NGG PAM site. CRISPR/SpRY targets a variety of different PAM sequences. We modified the C. albicans CRISPR/Cas9 system using the CRISPR/SpRY as a guide. We tested CRISPR/SpRY on C. albicansADE2 and show that our SpRY system can facilitate genome editing independent of an NGG PAM sequence, thus allowing the investigator to target AT-rich sequences. Our system will potentially enable mutation of the 125 C. albicans genes which have been previously untargetable with CRISPR/Cas9. Additionally, our system will allow for precise targeting of many genomic locations that lack NGG PAM sites.


Assuntos
Domínio B30.2-SPRY/genética , Sistemas CRISPR-Cas/genética , Candida albicans/genética , Edição de Genes/métodos , Genoma Fúngico , Proteína 9 Associada à CRISPR/genética , Candida albicans/patogenicidade , Humanos , Mutação
11.
Yeast ; 36(11): 669-677, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31364194

RESUMO

RNA can be modified in over 100 distinct ways, and these modifications are critical for function. Pseudouridine synthases catalyse pseudouridylation, one of the most prevalent RNA modifications. Pseudouridine synthase 7 modifies a variety of substrates in Saccharomyces cerevisiae including tRNA, rRNA, snRNA, and mRNA, but the substrates for other budding yeast Pus7 homologues are not known. We used CRISPR-mediated genome editing to disrupt Candida albicans PUS7 and find absence leads to defects in rRNA processing and a decrease in cell surface hydrophobicity. Furthermore, C. albicans Pus7 absence causes temperature sensitivity, defects in filamentation, altered sensitivity to antifungal drugs, and decreased virulence in a wax moth model. In addition, we find C. albicans Pus7 modifies tRNA residues, but does not modify a number of other S. cerevisiae Pus7 substrates. Our data suggests C. albicans Pus7 is important for fungal vigour and may play distinct biological roles than those ascribed to S. cerevisiae Pus7.


Assuntos
Candida albicans/genética , Transferases Intramoleculares/metabolismo , RNA Fúngico/genética , RNA Ribossômico/genética , Animais , Antifúngicos/farmacologia , Sistemas CRISPR-Cas , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Candidíase/microbiologia , Deleção de Genes , Edição de Genes , Humanos , Interações Hidrofóbicas e Hidrofílicas , Transferases Intramoleculares/genética , Larva/microbiologia , Mariposas/microbiologia , Processamento Pós-Transcricional do RNA , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
12.
Artigo em Inglês | MEDLINE | ID: mdl-31890080

RESUMO

Central dogma, transformation, and genome editing are key biological concepts for which junior scientists must gain experience during training. Here we present an exercise that introduces these concepts in a single practical laboratory exercise. Our exercise utilizes CRISPR/Cas9 genome editing to introduce a stop codon into Saccharomyces cerevisiae ADE2. This edit leads to the buildup of an adenine precursor that dyes the edited cells red. As the repair template, guide RNA, and Cas9 are all encoded in our vector, transformation can be performed in 2 hours. Furthermore, since all components of the Cas9/CRISPR system are encoded by the vector, specialized equipment and reagents, such as a PCR machine or oligonucleotides, are not required to perform the experiments as designed. As such, these exercises provide an efficient cost-effective introduction to a wide variety of key molecular biology concepts and lay the foundation for more rigorous investigations in upper-level classes and independent research projects.

13.
J Vis Exp ; (141)2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30507925

RESUMO

This method describes the efficient CRISPR mediated genome editing of the diploid human fungal pathogen Candida albicans. CRISPR-mediated genome editing in C. albicans requires Cas9, guide RNA, and repair template. A plasmid expressing a yeast codon optimized Cas9 (CaCas9) has been generated. Guide sequences directly upstream from a PAM site (NGG) are cloned into the Cas9 expression vector. A repair template is then made by primer extension in vitro. Cotransformation of the repair template and vector into C. albicans leads to genome editing. Depending on the repair template used, the investigator can introduce nucleotide changes, insertions, or deletions. As C. albicans is a diploid, mutations are made in both alleles of a gene, provided that the A and B alleles do not harbor SNPs that interfere with guide targeting or repair template incorporation. Multimember gene families can be edited in parallel if suitable conserved sequences exist in all family members. The C. albicans CRISPR system described is flanked by FRT sites and encodes flippase. Upon induction of flippase, the antibiotic marker (CaCas9) and guide RNA are removed from the genome. This allows the investigator to perform subsequent edits to the genome. C. albicans CRISPR is a powerful fungal genetic engineering tool, and minor alterations to the described protocols permit the modification of other fungal species including C. glabrata, N. castellii, and S. cerevisiae.


Assuntos
Sistemas CRISPR-Cas , Candida albicans/genética , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/genética , Humanos , Plasmídeos , RNA Guia de Cinetoplastídeos/genética
14.
J Vis Exp ; (140)2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30346392

RESUMO

N6-isopentenyladenosine RNA modifications are functionally diverse and highly conserved among prokaryotes and eukaryotes. One of the most highly conserved N6-isopentenyladenosine modifications occurs at the A37 position in a subset of tRNAs. This modification improves translation efficiency and fidelity by increasing the affinity of the tRNA for the ribosome. Mutation of enzymes responsible for this modification in eukaryotes are associated with several disease states, including mitochondrial dysfunction and cancer. Therefore, understanding the substrate specificity and biochemical activities of these enzymes is important for understanding of normal and pathologic eukaryotic biology. A diverse array of methods has been employed to characterize i6A modifications. Herein is described a direct approach for the detection of isopentenylation by Mod5. This method utilizes incubation of RNAs with a recombinant isopentenyl transferase, followed by RNase T1 digestion, and 1-dimensional gel electrophoresis analysis to detect i6A modifications. In addition, the potential adaptability of this protocol to characterize other RNA-modifying enzymes is discussed.


Assuntos
Alquil e Aril Transferases/metabolismo , Ensaios Enzimáticos/métodos , RNA de Transferência/metabolismo , Alquil e Aril Transferases/genética , Técnicas In Vitro , Isopenteniladenosina/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
15.
PeerJ ; 6: e4920, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29892505

RESUMO

Introduction of point mutations to a gene of interest is a powerful tool when determining protein function. CRISPR-mediated genome editing allows for more efficient transfer of a desired mutation into a wide range of model organisms. Traditionally, PCR amplification and DNA sequencing is used to determine if isolates contain the intended mutation. However, mutation efficiency is highly variable, potentially making sequencing costly and time consuming. To more efficiently screen for correct transformants, we have identified restriction enzymes sites that encode for two identical amino acids or one or two stop codons. We used CRISPR to introduce these restriction sites directly upstream of the Candida albicans UME6 Zn2+-binding domain, a known regulator of C. albicans filamentation. While repair templates coding for different restriction sites were not equally successful at introducing mutations, restriction digest screening enabled us to rapidly identify isolates with the intended mutation in a cost-efficient manner. In addition, mutated isolates have clear defects in filamentation and virulence compared to wild type C. albicans. Our data suggest restriction digestion screening efficiently identifies point mutations introduced by CRISPR and streamlines the process of identifying residues important for a phenotype of interest.

16.
mSphere ; 3(2)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695624

RESUMO

We have created new vectors for clustered regularly interspaced short palindromic repeat (CRISPR) mutagenesis in Candida albicans, Saccharomyces cerevisiae, Candida glabrata, and Naumovozyma castellii These new vectors permit a comparison of the requirements for CRISPR mutagenesis in each of these species and reveal different dependencies for repair of the Cas9 double-stranded break. Both C. albicans and S. cerevisiae rely heavily on homology-directed repair, whereas C. glabrata and N. castellii use both homology-directed and nonhomologous end-joining pathways. The high efficiency of these vectors permits the creation of unmarked deletions in each of these species and the recycling of the dominant selection marker for serial mutagenesis in prototrophs. A further refinement, represented by the "Unified" Solo vectors, incorporates Cas9, guide RNA, and repair template into a single vector, thus enabling the creation of vector libraries for pooled screens. To facilitate the design of such libraries, we have identified guide sequences for each of these species with updated guide selection algorithms.IMPORTANCE CRISPR-mediated genome engineering technologies have revolutionized genetic studies in a wide range of organisms. Here we describe new vectors and guide sequences for CRISPR mutagenesis in the important human fungal pathogens C. albicans and C. glabrata, as well as in the related yeasts S. cerevisiae and N. castellii The design of these vectors enables efficient serial mutagenesis in each of these species by leaving few, if any, exogenous sequences in the genome. In addition, we describe strategies for the creation of unmarked deletions in each of these species and vector designs that permit the creation of vector libraries for pooled screens. These tools and strategies promise to advance genetic engineering of these medically and industrially important species.


Assuntos
Sistemas CRISPR-Cas , Reparo do DNA por Junção de Extremidades , Fungos/genética , Edição de Genes/métodos , Mutagênese , Candida albicans/genética , Candida glabrata/genética , Quebras de DNA de Cadeia Dupla , Vetores Genéticos , RNA Guia de Cinetoplastídeos/genética , Saccharomyces cerevisiae/genética
17.
Cell ; 159(1): 148-162, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25219674

RESUMO

Pseudouridine is the most abundant RNA modification, yet except for a few well-studied cases, little is known about the modified positions and their function(s). Here, we develop Ψ-seq for transcriptome-wide quantitative mapping of pseudouridine. We validate Ψ-seq with spike-ins and de novo identification of previously reported positions and discover hundreds of unique sites in human and yeast mRNAs and snoRNAs. Perturbing pseudouridine synthases (PUS) uncovers which pseudouridine synthase modifies each site and their target sequence features. mRNA pseudouridinylation depends on both site-specific and snoRNA-guided pseudouridine synthases. Upon heat shock in yeast, Pus7p-mediated pseudouridylation is induced at >200 sites, and PUS7 deletion decreases the levels of otherwise pseudouridylated mRNA, suggesting a role in enhancing transcript stability. rRNA pseudouridine stoichiometries are conserved but reduced in cells from dyskeratosis congenita patients, where the PUS DKC1 is mutated. Our work identifies an enhanced, transcriptome-wide scope for pseudouridine and methods to dissect its underlying mechanisms and function.


Assuntos
Pseudouridina/análise , RNA Mensageiro/química , RNA não Traduzido/química , Animais , Candida albicans/genética , Candida albicans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Disceratose Congênita/genética , Disceratose Congênita/metabolismo , Perfilação da Expressão Gênica , Humanos , Transferases Intramoleculares/química , Transferases Intramoleculares/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Pseudouridina/metabolismo , RNA/química , RNA/genética , RNA Ribossômico/química , RNA Ribossômico/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Telomerase/química , Telomerase/genética
18.
PLoS One ; 8(3): e58765, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23536821

RESUMO

Antibacterial compounds typically act by directly inhibiting essential bacterial enzyme activities. Although this general mechanism of action has fueled traditional antibiotic discovery efforts for decades, new antibiotic development has not kept pace with the emergence of drug resistant bacterial strains. These limitations have severely restricted the therapeutic tools available for treating bacterial infections. Here we test an alternative antibacterial lead-compound identification strategy in which essential protein-protein interactions are targeted rather than enzymatic activities. Bacterial single-stranded DNA-binding proteins (SSBs) form conserved protein interaction "hubs" that are essential for recruiting many DNA replication, recombination, and repair proteins to SSB/DNA nucleoprotein substrates. Three small molecules that block SSB/protein interactions are shown to have antibacterial activity against diverse bacterial species. Consistent with a model in which the compounds target multiple SSB/protein interactions, treatment of Bacillus subtilis cultures with the compounds leads to rapid inhibition of DNA replication and recombination, and ultimately to cell death. The compounds also have unanticipated effects on protein synthesis that could be due to a previously unknown role for SSB/protein interactions in translation or to off-target effects. Our results highlight the potential of targeting protein-protein interactions, particularly those that mediate genome maintenance, as a powerful approach for identifying new antibacterial compounds.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genoma Bacteriano , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Permeabilidade da Membrana Celular , Replicação do DNA/efeitos dos fármacos , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Ligação Proteica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Recombinases Rec A/metabolismo
19.
Methods Mol Biol ; 922: 183-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22976187

RESUMO

Bacterial single-stranded DNA-binding proteins (SSBs) recruit a diverse array of genome maintenance enzymes to their sites of action through direct protein interactions. The essential nature of these SSB-protein interactions makes inhibitors that block SSB-partner complex formation valuable biochemical tools and attractive potential antibacterial agents. However, many of these protein-protein interactions are weak and not amenable to the high-throughput nature of small molecule screens. Here I describe a high-throughput screen to identify small molecules that inhibit the interaction between Exonuclease I (ExoI) and the final 10 amino acids of the SSB C-terminal tail (SSB-Ct). The strength of the binding between ExoI and the SSB-Ct tail is fundamental to the interaction's utility in the high-throughput screen.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Exodesoxirribonucleases/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Ligação Proteica/efeitos dos fármacos , Proteínas de Ligação a DNA/química , Exodesoxirribonucleases/química , Biologia Molecular/métodos
20.
RNA Biol ; 9(9): 1123-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23018782

RESUMO

Our recent finding that the Candida albicans RNase III enzyme CaDcr1 is an unusual, multifunctional RNase III coupled with data on the RNase III enzymes from other fungal species prompted us to seek a model that explained the evolution of RNase III's in modern budding yeast species. CaDcr1 has both dicer function (generates small RNA molecules from dsRNA precursors) and Rnt1 function, (catalyzes the maturation of 35S rRNA and U4 snRNA). Some budding yeast species have two distinct genes that encode these functions, a Dicer and RNT1, whereas others have only an RNT1 and no Dicer. As none of the budding yeast species has the canonical Dicer found in many other fungal lineages and most eukaryotes, the extant species must have evolved from an ancestor that lost the canonical Dicer, and evolved a novel Dicer from the essential RNT1 gene. No single, simple model could explain the evolution of RNase III enzymes from this ancestor because existing sequence data are consistent with two equally plausible models. The models share an architecture for RNase III evolution that involves gene duplication, loss, subfunctionalization, and neofunctionalization. This commentary explains our reasoning, and offers the prospect that further genomic data could further resolve the dilemma surrounding the budding yeast RNase III's evolution.


Assuntos
Candida albicans/genética , Evolução Molecular , Proteínas Fúngicas/genética , Processamento Pós-Transcricional do RNA/fisiologia , RNA Fúngico/genética , Ribonuclease III/genética , Candida albicans/enzimologia , Proteínas Fúngicas/metabolismo , RNA Fúngico/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Ribonuclease III/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA