Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4389, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782915

RESUMO

Members of the Omp85 superfamily of outer membrane proteins (OMPs) found in Gram-negative bacteria, mitochondria and chloroplasts are characterized by a distinctive 16-stranded ß-barrel transmembrane domain and at least one periplasmic POTRA domain. All previously studied Omp85 proteins promote critical OMP assembly and/or protein translocation reactions. Pseudomonas aeruginosa PlpD is the prototype of an Omp85 protein family that contains an N-terminal patatin-like (PL) domain that is thought to be translocated across the OM by a C-terminal ß-barrel domain. Challenging the current dogma, we find that the PlpD PL-domain resides exclusively in the periplasm and, unlike previously studied Omp85 proteins, PlpD forms a homodimer. Remarkably, the PL-domain contains a segment that exhibits unprecedented dynamicity by undergoing transient strand-swapping with the neighboring ß-barrel domain. Our results show that the Omp85 superfamily is more structurally diverse than currently believed and suggest that the Omp85 scaffold was utilized during evolution to generate novel functions.


Assuntos
Proteínas da Membrana Bacteriana Externa , Multimerização Proteica , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Periplasma/metabolismo , Domínios Proteicos , Membrana Externa Bacteriana/metabolismo , Modelos Moleculares , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
2.
Annu Rev Biochem ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38603556

RESUMO

Almost all outer membrane proteins (OMPs) in Gram-negative bacteria contain a ß-barrel domain that spans the outer membrane (OM). To reach the OM, OMPs must be translocated across the inner membrane by the Sec machinery, transported across the crowded periplasmic space through the assistance of molecular chaperones, and finally assembled (folded and inserted into the OM) by the ß-barrel assembly machine. In this review, we discuss how considerable new insights into the contributions of these factors to OMP biogenesis have emerged in recent years through the development of novel experimental, computational, and predictive methods. In addition, we describe recent evidence that molecular machines that were thought to function independently might interact to form dynamic intermembrane supercomplexes. Finally, we discuss new results that suggest that OMPs are inserted primarily near the middle of the cell and packed into supramolecular structures (OMP islands) that are distributed throughout the OM.

3.
bioRxiv ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37333265

RESUMO

Members of the Omp85 superfamily of outer membrane proteins (OMPs) found in Gram-negative bacteria, mitochondria and chloroplasts are characterized by a distinctive 16-stranded ß-barrel transmembrane domain and at least one periplasmic POTRA domain. All previously studied Omp85 proteins promote critical OMP assembly and/or protein translocation reactions. Pseudomonas aeruginosa PlpD is the prototype of an Omp85 protein family that contains an N-terminal patatin-like (PL) domain that is thought to be translocated across the OM by a C-terminal ß-barrel domain. Challenging the current dogma, we found that the PlpD PL-domain resides exclusively in the periplasm and, unlike previously studied Omp85 proteins, PlpD forms a homodimer. Remarkably, the PL-domain contains a segment that exhibits unprecedented dynamicity by undergoing transient strand-swapping with the neighboring ß-barrel domain. Our results show that the Omp85 superfamily is more structurally diverse than currently believed and suggest that the Omp85 scaffold was utilized during evolution to generate novel functions.

4.
mBio ; 13(5): e0228622, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36165532

RESUMO

Several antibacterial compounds have recently been discovered that potentially inhibit the activity of BamA, an essential subunit of a heterooligomer (the barrel assembly machinery or BAM) that assembles outer membrane proteins (OMPs) in Gram-negative bacteria, but their mode of action is unclear. To address this issue, we examined the effect of three inhibitors on the biogenesis of a model E. coli OMP (EspP) in vivo. We found that darobactin potently inhibited the interaction of a conserved C-terminal sequence motif (the "ß signal") with BamA, but had no effect on assembly if added at a postbinding stage. In contrast, Polyphor peptide 7 and MRL-494 inhibited both binding and at least one later step of assembly. Taken together with previous studies that analyzed the binding of darobactin and Polyphor peptide 7 to BamA in vitro, our results strongly suggest that the two compounds inhibit BAM function by distinct competitive and allosteric mechanisms. In addition to providing insights into the properties of the antibacterial compounds, our results also provide direct experimental evidence that supports a model in which the binding of the ß signal to BamA initiates the membrane insertion of OMPs. IMPORTANCE There is a clear need to develop novel broad-spectrum antibiotics to address the global problem of antimicrobial resistance. Multiple compounds that have strong antibacterial activity have recently been described that appear to inhibit the activity of the barrel assembly machinery (BAM), an essential complex that catalyzes the assembly (i.e., folding and membrane insertion) of outer membrane proteins (OMPs) in all Gram-negative bacteria. We analyzed the effects of three of these compounds on OMP biogenesis in vivo and found that they inhibited different stages of the assembly process. Because these compounds have distinct modes of action, they can be used in combination to reduce the emergence of resistant strains. As a corollary, we obtained evidence that these compounds will be valuable tools in future studies on BAM function.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Dobramento de Proteína
5.
Annu Rev Microbiol ; 76: 259-279, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35650668

RESUMO

The Omp85 protein superfamily is found in the outer membrane (OM) of all gram-negative bacteria and eukaryotic organelles of bacterial origin. Members of the family catalyze both the membrane insertion of ß-barrel proteins and the translocation of proteins across the OM. Although the mechanism(s) by which these proteins function is unclear, striking new insights have emerged from recent biochemical and structural studies. In this review we discuss the entire Omp85 superfamily but focus on the function of the best-studied member, BamA, which is an essential and highly conserved component of the bacterial barrel assembly machinery (BAM). Because BamA has multiple functions that overlap with those of other Omp85 proteins, it is likely the prototypical member of the Omp85 superfamily. Furthermore, BamA has become a protein of great interest because of the recent discovery of small-molecule inhibitors that potentially represent an important new class of antibiotics.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Peptídeos/metabolismo , Dobramento de Proteína
6.
J Biol Chem ; 298(4): 101802, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35257747

RESUMO

Almost all proteins that reside in the outer membrane (OM) of Gram-negative bacteria contain a membrane-spanning segment that folds into a unique ß barrel structure and inserts into the membrane by an unknown mechanism. To obtain further insight into outer membrane protein (OMP) biogenesis, we revisited the surprising observation reported over 20 years ago that the Escherichia coli OmpA ß barrel can be assembled into a native structure in vivo when it is expressed as two noncovalently linked fragments. Here, we show that disulfide bonds between ß strand 4 in the N-terminal fragment and ß strand 5 in the C-terminal fragment can form in the periplasmic space and greatly increase the efficiency of assembly of "split" OmpA, but only if the cysteine residues are engineered in perfect register (i.e., they are aligned in the fully folded ß barrel). In contrast, we observed only weak disulfide bonding between ß strand 1 in the N-terminal fragment and ß strand 8 in the C-terminal fragment that would form a closed or circularly permutated ß barrel. Our results not only demonstrate that ß barrels begin to fold into a ß-sheet-like structure before they are integrated into the OM but also help to discriminate among the different models of OMP biogenesis that have been proposed.


Assuntos
Proteínas da Membrana Bacteriana Externa , Escherichia coli , Proteínas da Membrana Bacteriana Externa/síntese química , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Dissulfetos/metabolismo , Escherichia coli/metabolismo , Conformação Proteica em Folha beta , Dobramento de Proteína , Estrutura Secundária de Proteína
7.
Cell ; 185(7): 1143-1156.e13, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35294859

RESUMO

Transmembrane ß barrel proteins are folded into the outer membrane (OM) of Gram-negative bacteria by the ß barrel assembly machinery (BAM) via a poorly understood process that occurs without known external energy sources. Here, we used single-particle cryo-EM to visualize the folding dynamics of a model ß barrel protein (EspP) by BAM. We found that BAM binds the highly conserved "ß signal" motif of EspP to correctly orient ß strands in the OM during folding. We also found that the folding of EspP proceeds via "hybrid-barrel" intermediates in which membrane integrated ß sheets are attached to the essential BAM subunit, BamA. The structures show an unprecedented deflection of the membrane surrounding the EspP intermediates and suggest that ß sheets progressively fold toward BamA to form a ß barrel. Along with in vivo experiments that tracked ß barrel folding while the OM tension was modified, our results support a model in which BAM harnesses OM elasticity to accelerate ß barrel folding.


Assuntos
Proteínas da Membrana Bacteriana Externa/ultraestrutura , Dobramento de Proteína , Proteínas da Membrana Bacteriana Externa/metabolismo , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo
8.
mBio ; 12(4): e0169621, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34399610

RESUMO

Many integral membrane proteins form oligomeric complexes, but the assembly of these structures is poorly understood. Here, we show that the assembly of OmpC, a trimeric porin that resides in the Escherichia coli outer membrane (OM), can be reconstituted in vitro. Although we observed the insertion of both urea-denatured and in vitro-synthesized OmpC into pure lipid vesicles at physiological pH, the protein assembled only into dead-end dimers. In contrast, in vitro-synthesized OmpC was inserted into proteoliposomes that contained the barrel assembly machinery (Bam) complex, a conserved heterooligomer that catalyzes protein integration into the bacterial OM, and folded into heat-stable trimers by passing through a short-lived dimeric intermediate. Interestingly, complete OmpC assembly was also dependent on the addition of lipopolysaccharide (LPS), a glycolipid located exclusively in the OM. Our results strongly suggest that trimeric porins form through a stepwise process that requires the integration of the protein into the OM in an assembly-competent state. Furthermore, our results provide surprising evidence that interaction with LPS is required not only for trimerization but also for the productive insertion of individual subunits into the lipid bilayer. IMPORTANCE Porins are a widespread family of homotrimers that represent a substantial fraction of the total protein located in the OM of many Proteobacteria. These proteins facilitate the nonspecific diffusion of small molecules across the outer membrane and strongly influence the susceptibility of bacteria to clinically used antibiotics. The assembly of porins and the mechanism by which they are integrated into the outer membrane, however, are poorly understood. Here, we show that assembly can be completely reconstituted in vitro and requires only phospholipid vesicles containing the Bam complex, a molecular chaperone, and LPS. Furthermore, by showing that LPS binding is required for membrane insertion, our results demonstrate that a native lipid promotes a specific stage of porin biogenesis.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Porinas/metabolismo , Proteolipídeos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Lipopolissacarídeos/metabolismo , Porinas/química , Porinas/genética , Dobramento de Proteína , Multimerização Proteica
9.
mBio ; 12(3)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947759

RESUMO

Membrane proteins that are integrated into the outer membrane of Gram-negative bacteria typically contain a unique "ß barrel" structure that serves as a membrane spanning segment. A conserved "ß signal" motif is located at the C terminus of the ß barrel of many outer membrane proteins (OMPs), but the function of this sequence is unclear. We found that mutations in the ß signal slightly delayed the assembly of three model Escherichia coli OMPs by reducing their affinity for the barrel assembly machinery (Bam) complex, a heterooligomer that catalyzes ß barrel insertion, and led to the degradation of a fraction of the protein in the periplasm. Interestingly, the absence of the periplasmic chaperone SurA amplified the effect of the mutations and caused the complete degradation of the mutant proteins. In contrast, the absence of another periplasmic chaperone (Skp) suppressed the effect of the mutations and considerably enhanced the efficiency of assembly. Our results reveal the existence of two parallel OMP targeting mechanisms that rely on a cis-acting peptide (the ß signal) and a trans-acting factor (SurA), respectively. Our results also challenge the long-standing view that periplasmic chaperones are redundant and provide evidence that they have specialized functions.IMPORTANCE Proteins that are embedded in the outer membrane of Gram-negative bacteria (OMPs) play an important role in protecting the cell from harmful chemicals. OMPs share a common architecture and often contain a conserved sequence motif (ß motif) of unknown function. Although OMPs are escorted to the outer membrane by proteins called chaperones, the exact function of the chaperones is also unclear. Here, we show that the ß motif and the chaperone SurA both target OMPs to the ß barrel insertion machinery in the outer membrane. In contrast, the chaperone Skp delivers unintegrated OMPs to protein degradation complexes. Our results challenge the long-standing view that chaperones are functionally redundant and strongly suggest that they have specialized roles in OMP targeting and quality control.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Chaperonas Moleculares/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas de Transporte/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Chaperonas Moleculares/genética , Mutação , Peptidilprolil Isomerase/genética , Dobramento de Proteína
10.
Mol Microbiol ; 115(2): 290-304, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32996200

RESUMO

Bacteroides fragilis toxin (BFT) is a protein secreted by enterotoxigenic (ETBF) strains of B. fragilis. BFT is synthesized as a proprotein (proBFT) that is predicted to be a lipoprotein and that is cleaved into two discrete fragments by a clostripain-like protease called fragipain (Fpn). In this study, we obtained evidence that Fpn cleaves proBFT following its transport across the outer membrane. Remarkably, we also found that the disruption of the fpn gene led to a strong reduction in the level of >100 other proteins, many of which are predicted to be lipoproteins, in the culture medium of an ETBF strain. Experiments performed with purified Fpn provided direct evidence that the protease releases at least some of these proteins from the cell surface. The observation that wild-type cells outcompeted an fpn- strain in co-cultivation assays also supported the notion that Fpn plays an important role in cell physiology and is not simply dedicated to toxin biogenesis. Finally, we found that purified Fpn altered the adhesive properties of HT29 intestinal epithelial cells. Our results suggest that Fpn is a broad-spectrum protease that not only catalyzes the protein secretion on a wide scale but that also potentially cleaves host cell proteins during colonization.


Assuntos
Toxinas Bacterianas/metabolismo , Bacteroides fragilis/metabolismo , Metaloendopeptidases/metabolismo , Peptídeo Hidrolases/metabolismo , Bacteroides fragilis/genética , Cisteína Endopeptidases/metabolismo , Lipoproteínas/metabolismo , Peptídeo Hidrolases/fisiologia
11.
Sci Rep ; 10(1): 4557, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165713

RESUMO

Bacterial outer membrane proteins (OMPs) contain a unique "ß barrel" segment that is inserted into the membrane by the barrel assembly machinery (Bam) complex by an unknown mechanism. OMP assembly has been reconstituted in vitro, but assembly reactions have involved the use of urea-denatured protein purified from inclusion bodies. Here we show that the E. coli Bam complex catalyzes the efficient assembly of OMPs synthesized de novo in a coupled in vitro transcription/translation system. Interestingly, the in vitro translated forms of the OMPs we analyzed were assembled more rapidly and were effectively engaged by fewer periplasmic chaperones than their urea-denatured counterparts. Taken together, our results strongly suggest that the mode of production influences the conformational states sampled by OMPs and thereby affects their recognition by both chaperones and the Bam complex. Besides providing insights into OMP biogenesis, our work describes a novel, streamlined method to reconstitute OMP assembly in vitro.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/química , Técnicas In Vitro , Biossíntese de Proteínas , Estrutura Secundária de Proteína , Proteolipídeos/metabolismo
12.
mBio ; 10(5)2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641085

RESUMO

Trimeric autotransporter adhesins (TAAs) are a family of bacterial outer membrane (OM) proteins that are comprised of three identical subunits. Each subunit contains an N-terminal extracellular ("passenger") domain and a short C-terminal segment that contributes four ß strands to a single 12-stranded ß barrel. The mechanism by which the passenger domains are translocated across the OM and the energetics of the translocation reaction are poorly understood. To address these issues, we examined the secretion of modified versions of the passenger domain of UpaG, a TAA produced by Escherichia coli CFT073. Using the SpyTag-SpyCatcher system to probe passenger domain localization, we found that both intrinsically disordered polypeptides fused to the UpaG passenger domain and artificially disulfide-bonded polypeptides were secreted effectively but relatively slowly. Surprisingly, we also found that in some cases, the three nonnative passenger domain segments associated with a single trimer were secreted sequentially. Photo-cross-linking experiments indicated that incompletely assembled UpaG derivatives remained bound to the barrel assembly machinery (Bam) complex until all three passenger domains were fully secreted. Taken together, our results strongly suggest that the secretion of polypeptides through the TAA pathway is coordinated with the assembly of the ß barrel domain and that the folding of passenger domains in the extracellular space maximizes the rate of secretion. Furthermore, our work provides evidence for an unprecedented sequential mode of protein translocation, at least under specific experimental conditions.IMPORTANCE Trimeric autotransporter adhesins (TAAs) are specialized bacterial outer membrane proteins consisting of three identical subunits. TAAs contain large extracellular domains that trimerize and promote virulence, but the mechanism by which they are secreted is poorly understood. We found that the extracellular domains of a native TAA were secreted rapidly but that disordered and artificially folded polypeptides fused to native passenger domains were secreted in a slow, sequential fashion. Our results strongly suggest that the efficient secretion of native extracellular domains is driven by their trimerization following export but that alternative energy sources can be harnessed to secrete nonnative polypeptides. Furthermore, we obtained evidence that TAA extracellular domains are secreted before the assembly of the linked membrane spanning domain is completed.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Externa Bacteriana/metabolismo , Peptídeos/metabolismo , Proteínas de Membrana/metabolismo , Dobramento de Proteína
13.
Mol Microbiol ; 112(5): 1373-1387, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31369167

RESUMO

OsmY is a widely conserved but poorly understood 20 kDa periplasmic protein. Using a folding biosensor, we previously obtained evidence that OsmY has molecular chaperone activity. To discover natural OsmY substrates, we screened for proteins that are destabilized and thus present at lower steady-state levels in an osmY-null strain. The abundance of an outer membrane protein called antigen 43 was substantially decreased and its ß-barrel domain was undetectable in the outer membrane of an osmY-null strain. Antigen 43 is a member of the diffuse adherence family of autotransporters. Like strains that are defective in antigen 43 production, osmY-null mutants failed to undergo cellular autoaggregation. In vitro, OsmY assisted in the refolding of the antigen 43 ß-barrel domain and protected it from added protease. Finally, an osmY-null strain that expressed two members of the diffuse adherence family of autotransporters that are distantly related to antigen 43, EhaA and TibA, contained reduced levels of the proteins and failed to undergo cellular autoaggregation. Taken together, our results indicate that OsmY is involved in the biogenesis of a major subset of autotransporters, a group of proteins that play key roles in bacterial pathogenesis.


Assuntos
Adesinas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Dobramento de Proteína , Sistemas de Secreção Tipo V/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Chaperonas Moleculares/metabolismo , Proteínas Periplásmicas de Ligação/genética , Domínios Proteicos/fisiologia
14.
Nat Commun ; 10(1): 3358, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350400

RESUMO

The integration of ß-barrel proteins into the bacterial outer membrane (OM) is catalysed by the ß-barrel assembly machinery (BAM). The central BAM subunit (BamA) itself contains a ß-barrel domain that is essential for OM protein biogenesis, but its mechanism of action is unknown. To elucidate its function, here we develop a method to trap a native Escherichia coli ß-barrel protein bound stably to BamA at a late stage of assembly in vivo. Using disulfide-bond crosslinking, we find that the first ß-strand of a laterally 'open' form of the BamA ß-barrel forms a rigid interface with the C-terminal ß-strand of the substrate. In contrast, the lipid-facing surface of the last two BamA ß-strands forms weaker, conformationally heterogeneous interactions with the first ß-strand of the substrate that likely represent intermediate assembly states. Based on our results, we propose that BamA promotes the membrane integration of partially folded ß-barrels by a 'swing' mechanism.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Membrana Celular/química , Membrana Celular/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ligação Proteica , Domínios Proteicos
15.
EcoSal Plus ; 8(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30838971

RESUMO

Type V, or "autotransporter," secretion is a term used to refer to several simple protein export pathways that are found in a wide range of Gram-negative bacteria. Autotransporters are generally single polypeptides that consist of an extracellular ("passenger") domain and a ß barrel domain that anchors the protein to the outer membrane (OM). Although it was originally proposed that the passenger domain is secreted through a channel formed solely by the covalently linked ß barrel domain, experiments performed primarily on the type Va, or "classical," autotransporter pathway have challenged this hypothesis. Several lines of evidence strongly suggest that both the secretion of the passenger domain and the membrane integration of the ß barrel domain are catalyzed by the barrel assembly machinery (Bam) complex, a conserved hetero-oligomer that plays an essential role in the assembly of most integral OM proteins. The secretion reaction appears to be driven at least in part by the folding of the passenger domain in the extracellular space. Although many aspects of autotransporter biogenesis remain to be elucidated, it will be especially interesting to determine whether the different classes of proteins that fall under the type V rubric-most of which have not been examined in detail-are assembled by the same basic mechanism as classical autotransporters.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Bactérias Gram-Negativas/metabolismo , Sistemas de Secreção Tipo V/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Dobramento de Proteína , Estrutura Terciária de Proteína , Transporte Proteico
16.
Elife ; 72018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30475203

RESUMO

The E. coli ribosome exit tunnel can accommodate small folded proteins, while larger ones fold outside. It remains unclear, however, to what extent the geometry of the tunnel influences protein folding. Here, using E. coli ribosomes with deletions in loops in proteins uL23 and uL24 that protrude into the tunnel, we investigate how tunnel geometry determines where proteins of different sizes fold. We find that a 29-residue zinc-finger domain normally folding close to the uL23 loop folds deeper in the tunnel in uL23 Δloop ribosomes, while two ~ 100 residue proteins normally folding close to the uL24 loop near the tunnel exit port fold at deeper locations in uL24 Δloop ribosomes, in good agreement with results obtained by coarse-grained molecular dynamics simulations. This supports the idea that cotranslational folding commences once a protein domain reaches a location in the exit tunnel where there is sufficient space to house the folded structure.


Assuntos
Escherichia coli/genética , Dobramento de Proteína , Ribossomos/genética , Escherichia coli/química , Simulação de Dinâmica Molecular , Biossíntese de Proteínas/genética , Domínios Proteicos/genética , Dedos de Zinco/genética
17.
Mol Microbiol ; 110(1): 143-159, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30107065

RESUMO

Although the barrel assembly machinery (Bam) complex has been shown to facilitate the insertion of ß barrel proteins into the bacterial outer membrane (OM), the stage at which ß barrels fold is unknown. Here, we describe insights into ß barrel assembly that emerged from an analysis of a member of the autotransporter family of OM proteins (EspP) in Escherichia coli. EspP contains an extracellular 'passenger' domain that is translocated across the OM and then released from the covalently linked ß barrel domain in an intra-barrel cleavage reaction. We found that the mutation of an unusual lipid-exposed lysine residue impairs a previously unidentified late folding step that follows both the membrane insertion of the ß barrel domain and the secretion of the passenger domain but that precedes proteolytic maturation. Our results demonstrate that ß barrel assembly can be completed at a post-insertion stage and raise the possibility that interactions with membrane lipids can promote folding in vivo. Furthermore, by showing that the passenger domain is secreted before the ß barrel domain is fully assembled, our results also provide evidence against the long-standing hypothesis that autotransporters are autonomous protein secretion systems.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Serina Endopeptidases/metabolismo , Sistemas de Secreção Tipo V/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Membrana Celular/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Lisina/genética , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Domínios Proteicos/genética , Dobramento de Proteína , Análise de Sequência de Proteína , Serina Endopeptidases/química , Serina Endopeptidases/genética , Sistemas de Secreção Tipo V/química , Sistemas de Secreção Tipo V/genética
18.
J Biol Chem ; 293(8): 2959-2973, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29311257

RESUMO

Most proteins that reside in the bacterial outer membrane (OM) have a distinctive "ß-barrel" architecture, but the assembly of these proteins is poorly understood. The spontaneous assembly of OM proteins (OMPs) into pure lipid vesicles has been studied extensively but often requires non-physiological conditions and time scales and is strongly influenced by properties of the lipid bilayer, including surface charge, thickness, and fluidity. Furthermore, the membrane insertion of OMPs in vivo is catalyzed by a heterooligomer called the ß-barrel assembly machinery (Bam) complex. To determine the role of lipids in the assembly of OMPs under more physiological conditions, we exploited an assay in which the Bam complex mediates their insertion into membrane vesicles. After reconstituting the Bam complex into vesicles that contain a variety of different synthetic lipids, we found that two model OMPs, EspP and OmpA, folded efficiently regardless of the lipid composition. Most notably, both proteins folded into membranes composed of a gel-phase lipid that mimics the rigid bacterial OM. Interestingly, we found that EspP, OmpA, and another model protein (OmpG) folded at significantly different rates and that an α-helix embedded inside the EspP ß-barrel accelerates folding. Our results show that the Bam complex largely overcomes effects that lipids exert on OMP assembly and suggest that specific interactions between the Bam complex and an OMP influence its rate of folding.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Bicamadas Lipídicas/metabolismo , Proteínas Ligadas a Lipídeos/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Bicamadas Lipídicas/química , Proteínas Ligadas a Lipídeos/química , Proteínas Ligadas a Lipídeos/genética , Lipossomos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Porinas/química , Porinas/genética , Porinas/metabolismo , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
19.
Nat Commun ; 8(1): 1309, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29101319

RESUMO

The Bam complex promotes the insertion of ß-barrel proteins into the bacterial outer membrane, but it is unclear whether it threads ß-strands into the lipid bilayer in a stepwise fashion or catalyzes the insertion of pre-folded substrates. Here, to distinguish between these two possibilities, we analyze the biogenesis of UpaG, a trimeric autotransporter adhesin (TAA). TAAs consist of three identical subunits that together form a single ß-barrel domain and an extracellular coiled-coil ("passenger") domain. Using site-specific photocrosslinking to obtain spatial and temporal insights into UpaG assembly, we show that UpaG ß-barrel segments fold into a trimeric structure in the periplasm that persists until the termination of passenger-domain translocation. In addition to obtaining evidence that at least some ß-barrel proteins begin to fold before they interact with the Bam complex, we identify several discrete steps in the assembly of a poorly characterized class of virulence factors.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Substituição de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Periplasma/metabolismo , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína
20.
Mol Microbiol ; 106(5): 777-792, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28941249

RESUMO

Almost all bacterial outer membrane proteins (OMPs) contain a ß barrel domain that serves as a membrane anchor, but the assembly and quality control of these proteins are poorly understood. Here, we show that the introduction of a single lipid-facing arginine residue near the middle of the ß barrel of the Escherichia coli OMPs OmpLA and EspP creates an energy barrier that impedes membrane insertion. Although several unintegrated OmpLA mutants remained insertion-competent, they were slowly degraded by the periplasmic protease DegP. Two EspP mutants were also gradually degraded by DegP but were toxic because they first bound to the Bam complex, an essential heteroligomer that catalyzes the membrane insertion of OMPs. Interestingly, another EspP mutant likewise formed a prolonged, deleterious interaction with the Bam complex but was protected from degradation and eventually inserted into the membrane in a native conformation. The different types of interactions between the EspP mutants and the Bam complex that we observed may correspond to distinct stages in OMP assembly. Our results show that sequences that significantly delay assembly are disfavored not only because unintegrated OMPs are subjected to degradation, but also because OMPs that assemble slowly can form dominant-negative interactions with the Bam complex.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Fosfolipases A1/genética , Serina Endopeptidases/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Periplasma/metabolismo , Proteínas Periplásmicas/metabolismo , Fosfolipases A1/metabolismo , Domínios Proteicos/genética , Dobramento de Proteína , Estrutura Terciária de Proteína/genética , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...