Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 96(9): 3026-3030, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28453652

RESUMO

The major histocompatibility complex (MHC) is a cluster of genes involved with immune responses. The chicken MHC has been shown to influence resistance to viruses, bacteria, and infections from both internal and external parasites. The highly variable chicken MHC haplotypes were initially identified by the use of haplotype-specific serological reagents. A novel SNP-based panel encompassing 210,000 bp of the MHC-B locus was developed to allow fine scale genetic analyses including rapid identification of novel haplotypes for which serological reagents are not available. The Finnish Landrace breed of chickens traces its origins to almost 1,000 years ago, with multiple lineages maintained as small populations in isolated villages. The breed is well adapted to the cooler Finnish climate and is considered to be an infrequent egg layer. Conservation efforts to protect this endangered breed were initiated by a hobby breeder in the 1960s. An official conservation program was established in 1998 and now 12 different populations are currently maintained by a network of volunteer hobbyist breeders. Variation in the MHC-B region in these populations was examined using a panel of 90 selected SNP. A total of 195 samples from 12 distinct populations (average of 15 individuals sampled per population) were genotyped with the 90 SNP panel specific for the MHC-B region, spanning 210,000 bp. There were 36 haplotypes found, 16 of which are a subset of 78 that had been previously identified in either commercially utilized or heritage breeds from North America with the remaining 20 haplotypes being novel. The average number of MHC-B haplotypes found within each Finnish Landrace population was 5.9, and ranged from one to 13. While haplotypes common to multiple populations were found, population-specific haplotypes were also identified. This study shows that substantial MHC-B region diversity exists in the Finnish Landrace breed and exemplifies the significance tied to conserving multiple populations of rare breeds.


Assuntos
Galinhas/genética , Variação Genética , Complexo Principal de Histocompatibilidade/genética , Polimorfismo de Nucleotídeo Único , Animais , Cruzamento , Finlândia
2.
Poult Sci ; 95(2): 393-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26827122

RESUMO

The chicken Major Histocompatibility Complex (MHC) is very strongly associated with disease resistance and thus is a very important region of the chicken genome. Historically, MHC (B locus) has been identified by the use of serology with haplotype specific alloantisera. These antisera can be difficult to produce and frequently cross-react with multiple haplotypes and hence their application is generally limited to inbred and MHC-defined lines. As a consequence, very little information about MHC variability in heritage chicken breeds is available. DNA-based methods are now available for examining MHC variability in these previously uncharacterized populations. A high density SNP panel consisting of 101 SNP that span a 230,000 bp region of the chicken MHC was used to examine MHC variability in 17 heritage populations of chickens from five universities from Canada and the United States. The breeds included 6 heritage broiler lines, 3 Barred Plymouth Rock, 2 New Hampshire and one each of Rhode Island Red, Light Sussex, White Leghorn, Dark Brown Leghorn, and 2 synthetic lines. These heritage breeds contained from one to 11 haplotypes per line. A total of 52 unique MHC haplotypes were found with only 10 of them identical to serologically defined haplotypes. Furthermore, nine MHC recombinants with their respective parental haplotypes were identified. This survey confirms the value of these non-commercially utilized lines in maintaining genetic diversity. The identification of multiple MHC haplotypes and novel MHC recombinants indicates that diversity is being generated and maintained within these heritage populations.


Assuntos
Galinhas/genética , Variação Genética , Complexo Principal de Histocompatibilidade , Animais , Canadá , Estados Unidos
3.
Environ Entomol ; 44(3): 890-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26313996

RESUMO

The objective of this study was to document current areas of subterranean termite activity in Wisconsin and to evaluate genetic characteristics of these northern, peripheral colonies. Here, amplified fragment-length polymorphism was used to characterize levels of inbreeding, expected heterozygosity, and percent polymorphism within colonies as well as genetic structure among populations sampled. Genetic analysis revealed two species of termites occur in Wisconsin, Reticulitermes flavipes (Kollar) and Reticulitermes tibialis Banks, both found in the southern half of the state. Colonies of both species in Wisconsin are thought to represent the northern boundary of their current distributions. Measurements of within colony genetic variation showed the proportion of polymorphic loci to be between 52.9-63.9% and expected heterozygosity to range from 0.122-0.189. Consistent with geographical isolation, strong intercolony genetic differences were observed, with over 50% of FST values above 0.25 and the remaining showing moderate levels of genetic differentiation. Combined with low levels of inbreeding in most collection locations (FIS 0.042-0.123), we hypothesize termites were introduced numerous times in the state, likely by anthropogenic means. We discuss the potential effects of these genetic characteristics on successful colony establishment of termites along the northern boundary compared with termites in the core region of their distribution.


Assuntos
Variação Genética , Isópteros/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Genética Populacional , Endogamia , Wisconsin
4.
Genetics ; 151(3): 1027-39, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10049920

RESUMO

Several eukaryotic homologs of the Escherichia coli RecQ DNA helicase have been found. These include the human BLM gene, whose mutation results in Bloom syndrome, and the human WRN gene, whose mutation leads to Werner syndrome resembling premature aging. We cloned a Drosophila melanogaster homolog of the RECQ helicase family, Dmblm (Drosophila melanogaster Bloom), which encodes a putative 1487-amino-acid protein. Phylogenetic and dot plot analyses for the RECQ family, including 10 eukaryotic and 3 prokaryotic genes, indicate Dmblm is most closely related to the Homo sapiens BLM gene, suggesting functional similarity. Also, we found that Dmblm cDNA partially rescued the sensitivity to methyl methanesulfonate of Saccharomyces cerevisiae sgs1 mutant, demonstrating the presence of a functional similarity between Dmblm and SGS1. Our analyses identify four possible subfamilies in the RECQ family: (1) the BLM subgroup (H. sapiens Bloom, D. melanogaster Dmblm, and Caenorhabditis elegans T04A11.6); (2) the yeast RECQ subgroup (S. cerevisiae SGS1 and Schizosaccharomyces pombe rqh1/rad12); (3) the RECQL/Q1 subgroup (H. sapiens RECQL/Q1 and C. elegans K02F3.1); and (4) the WRN subgroup (H. sapiens Werner and C. elegans F18C5.2). This result may indicate that metazoans hold at least three RECQ genes, each of which may have a different function, and that multiple RECQ genes diverged with the generation of multicellular organisms. We propose that invertebrates such as nematodes and insects are useful as model systems of human genetic diseases.


Assuntos
Adenosina Trifosfatases/genética , DNA Helicases/genética , Drosophila melanogaster/genética , Evolução Molecular , Sequência de Aminoácidos , Animais , Síndrome de Bloom/genética , Sobrevivência Celular , Clonagem Molecular , DNA Helicases/química , Humanos , Proteínas de Insetos/genética , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Plasmídeos/genética , Reação em Cadeia da Polimerase , RecQ Helicases , Alinhamento de Sequência , Supressão Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...