Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 121: 247-260, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28456688

RESUMO

In cerebellar cortex, mGlu4 receptors located on parallel fibers play an essential role in normal motor function, but the molecular mechanisms involved are not yet completely understood. Using a strategy combining biochemical and electrophysiological approaches in the rodent cerebellum, we demonstrate that presynaptic mGlu4 receptors control synaptic transmission through an atypical activation of Gαq proteins. First, the Gαq subunit, PLC and PKC signaling proteins present in cerebellar extracts are retained on affinity chromatography columns grafted with different sequences of the cytoplasmic domain of mGlu4 receptor. The i2 loop and the C terminal domain were used as baits, two domains that are known to play a pivotal role in coupling selectivity and efficacy. Second, in situ proximity ligation assays show that native mGlu4 receptors and Gαq subunits are in close physical proximity in cerebellar cortical slices. Finally, electrophysiological experiments demonstrate that the molecular mechanisms underlying mGlu4 receptor-mediated inhibition of transmitter release at cerebellar Parallel Fiber (PF) - Molecular Layer Interneuron (MLI) synapses involves the Gαq-PLC signaling pathway. Taken together, our results provide compelling evidence that, in the rodent cerebellar cortex, mGlu4 receptors act by coupling to the Gαq protein and PLC effector system to reduce glutamate synaptic transmission.


Assuntos
Córtex Cerebelar/citologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia , Animais , Animais Recém-Nascidos , Benzopiranos/farmacologia , Citoplasma/metabolismo , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Rede Nervosa/efeitos dos fármacos , Propionatos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/genética , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética
2.
J Biol Chem ; 288(38): 27307-27314, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23897808

RESUMO

Mechanosensitive channels are detected in all cells and are speculated to play a key role in many functions including osmoregulation, growth, hearing, balance, and touch. In prokaryotic cells, a direct gating of mechanosensitive channels by membrane tension was clearly demonstrated because the purified channels could be functionally reconstituted in a lipid bilayer. No such evidence has been presented yet in the case of mechanosensitive channels from animal cells. TREK-1, a two-pore domain K(+) channel, was the first animal mechanosensitive channel identified at the molecular level. It is the target of a large variety of agents such as volatile anesthetics, neuroprotective agents, and antidepressants. We have produced the mouse TREK-1 in yeast, purified it, and reconstituted the protein in giant liposomes amenable to patch clamp recording. The protein exhibited the expected electrophysiological properties in terms of kinetics, selectivity, and pharmacology. Negative pressure (suction) applied through the pipette had no effect on the channel, but positive pressure could completely and reversibly close the channel. Our interpretation of these data is that the intrinsic tension in the lipid bilayer is sufficient to maximally activate the channel, which can be closed upon modification of the tension. These results indicate that TREK-1 is directly sensitive to membrane tension.


Assuntos
Membrana Celular/química , Lipossomos/química , Canais de Potássio de Domínios Poros em Tandem/química , Pressão , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Lipossomos/metabolismo , Camundongos , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/isolamento & purificação , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Tensão Superficial
3.
Biochim Biophys Acta ; 1808(1): 41-6, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20888317

RESUMO

The mechanosensitive channel MscL of the plasma membrane of bacteria is a homopentamer involved in the protection of cells during osmotic downshock. The MscL protein, a polypeptide of 136 residues, was recently shown to require YidC to be inserted in the inner membrane of E. coli. The insertase YidC is a component of an insertion pathway conserved in bacteria, mitochondria and chloroplasts. MscL insertion was independent of the Sec translocon. Here, we report sucrose gradient centrifugation and freeze-etching microscopy experiments showing that MscL produced in a cell-free system complemented with preformed liposomes is able to insert directly in a pure lipid bilayer. Patch-clamp experiments performed with the resulting proteoliposomes showed that the protein was highly active. In vitro cell-free synthesis targeting to liposomes is a new promising expression system for membrane proteins, including those that might require an insertion machinery in vivo. Our results also question the real role of insertases such as YidC for membrane protein insertion in vivo.


Assuntos
Proteínas de Escherichia coli/metabolismo , Canais Iônicos/metabolismo , Lipídeos/química , Proteínas de Membrana Transportadoras/metabolismo , Bioquímica/métodos , Sistema Livre de Células , Cloroplastos/metabolismo , Escherichia coli/metabolismo , Técnica de Fratura por Congelamento , Bicamadas Lipídicas/química , Lipossomos/química , Mitocôndrias/metabolismo , Osmose , Técnicas de Patch-Clamp , Peptídeos/química
4.
J Magn Reson ; 204(1): 155-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20194040

RESUMO

High-resolution structures of membrane proteins have so far been obtained mostly by X-ray crystallography, on samples where the protein is surrounded by detergent. Recent developments of solid-state NMR have opened the way to a new approach for the study of integral membrane proteins inside a membrane. At the same time, the extension of cell-free expression to the production of membrane proteins allows for the production of proteins tailor made for NMR. We present here an in situ solid-state NMR study of a membrane protein selectively labeled through the use of cell-free expression. The sample consists of MscL (mechano-sensitive channel of large conductance), a 75kDa pentameric alpha-helical ion channel from Escherichia coli, reconstituted in a hydrated lipid bilayer. Compared to a uniformly labeled protein sample, the spectral crowding is greatly reduced in the cell-free expressed protein sample. This approach may be a decisive step required for spectral assignment and structure determination of membrane proteins by solid-state NMR.


Assuntos
Sistema Livre de Células/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Canais Iônicos/química , Canais Iônicos/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Espectroscopia de Ressonância Magnética/métodos , Pós
5.
J Mol Biol ; 382(1): 13-23, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18616949

RESUMO

Synthesis of the Klebsiella oxytoca outer membrane secretin PulD, or its membrane-associated core domain, in a liposome-supplemented Escherichia coli in vitro transcription-translation system resulted in the formation of multimers that appeared as typical dodecameric secretin rings when examined by negative-stain electron microscopy. Cryo-electron microscopy of unstained liposomes and differential extraction by urea indicated that the secretin particles were inserted into the liposome membranes. When made in the presence of the detergent Brij-35, PulD and the core domain were synthesized as monomers. Both proteins caused almost immediate growth cessation when synthesized in E. coli without a signal peptide. The small amounts of PulD synthesized before cell death appeared as multimers with characteristics similar to those of the normal outer membrane secretin dodecamers. It was concluded that multimerization and membrane insertion are intrinsic properties of secretin PulD that are independent of a specific membrane environment or membrane-associated factors. The closely related Erwinia chrysanthemi secretin OutD behaved similarly to PulD in all assays, but the more distantly related Neisseria meningitidis secretin PilQ did not form multimers either when made in vitro in the presence of liposomes or when made in E. coli without its signal peptide. This is the first report of the apparently spontaneous in vitro assembly and membrane insertion of a large outer membrane protein complex. Spontaneous multimerization and insertion appear to be restricted to outer membrane proteins closely related to PulD.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Klebsiella oxytoca/metabolismo , Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Proteínas de Fímbrias/metabolismo , Klebsiella oxytoca/citologia , Klebsiella oxytoca/efeitos dos fármacos , Klebsiella oxytoca/ultraestrutura , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Sinais Direcionadores de Proteínas , Estrutura Quaternária de Proteína , Ureia/farmacologia
6.
J Mol Biol ; 378(3): 551-64, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18377930

RESUMO

Viral scaffolding proteins direct polymerization of major capsid protein subunits into icosahedral procapsid structures. The scaffolding protein of bacteriophage SPP1 was engineered with a C-terminal hexahistidine tag (gp11-His(6)) and purified. The protein is an alpha-helical-rich molecule with a very elongated shape as found for internal scaffolding proteins from other phages. It is a 3.3 S tetramer of 93.6 kDa at micromolar concentrations. Intersubunit cross-linking of these tetramers generated preferentially covalently bound dimers, revealing that gp11-His(6) is structurally a dimer of dimers. Incubation at temperatures above 37 degrees C correlated with a reduction of its alpha-helical content and a less effective intersubunit cross-linking. Complete loss of secondary structure was observed at temperatures above 60 degrees C. Refolding of gp11-His(6) thermally denatured at 65 degrees C led to reacquisition of the protein native ellipticity spectrum but the resulting population of molecules was heterogeneous. Its hydrodynamic behavior was compatible with a mix of 3.3 S elongated tetramers (approximately 90%) and a smaller fraction of 2.4 S dimers (approximately 10%). This population of gp11-His(6) was competent to direct polymerization of the SPP1 major capsid protein gp13 into procapsid-like structures in a newly developed assembly assay in vitro. Although native tetramers were active in assembly, refolded gp11-His(6) showed enhanced binding to gp13 revealing a more active species for interaction with the major capsid protein than native gp11-His(6).


Assuntos
Proteínas Virais/metabolismo , Sequência de Aminoácidos , Bacteriófagos/classificação , Dicroísmo Circular , Dimerização , Histidina/química , Histidina/metabolismo , Dados de Sequência Molecular , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Temperatura , Proteínas Virais/química
7.
Biochem J ; 403(1): 183-7, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17176254

RESUMO

Hemifluorinated and fluorinated surfactants are lipophobic and, as such, non-detergent. Although they do not solubilize biological membranes, they can, after conventional solubilization, substitute for detergents to keep membrane proteins soluble, which generally improves their stability [Breyton, Chabaud, Chaudier, Pucci and Popot (2004) FEBS Lett. 564, 312-318]. In the present study, we show that (hemi)fluorinated surfactants can be used for in vitro synthesis of membrane proteins: they do not interfere with protein synthesis, and they provide a suitable environment for MscL, a pentameric mechanosensitive channel, to fold and oligomerize to its native functional state. Following synthesis, both types of surfactants can be used to deliver MscL directly to pre-formed lipid vesicles. The electrophysiological activity of MscL synthesized in vitro in the presence of either hemi- or per-fluorinated surfactant is similar to that of the protein expressed in vivo.


Assuntos
Detergentes , Proteínas de Membrana/biossíntese , Tensoativos/química , Membrana Celular/fisiologia , Sistema Livre de Células , Escherichia coli/fisiologia , Hidrocarbonetos Fluorados , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/fisiologia , Técnicas de Patch-Clamp , Proteolipídeos/química
8.
J Bacteriol ; 187(6): 1959-65, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15743943

RESUMO

The Escherichia coli yjhA (renamed nanC) gene encodes a protein of the KdgM family of outer membrane-specific channels. It is transcribed divergently from fimB, a gene involved in the site-specific inversion of the region controlling transcription of the fimbrial structural genes but is separated from it by one of the largest intergenic regions in E. coli. We show that nanC expression is induced by N-acetylneuraminic acid and modulated by N-acetylglucosamine. This regulation occurs via the NanR and NagC regulators, which also control fimB expression. nanC expression is also activated by the regulators cyclic AMP-catabolite activator protein, OmpR, and CpxR. When the NanC protein was reconstituted into liposomes, it formed channels with a conductance of 450 pS at positive potential and 300 to 400 pS at negative potential in 800 mM KCl. The channels had a weak anionic selectivity. In an ompR background, where the general porins OmpF and OmpC are absent, NanC is required for growth of E. coli on N-acetylneuraminic acid as the sole carbon source. All these results suggest that NanC is an N-acetylneuraminic acid outer membrane channel protein.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Porinas/genética , Porinas/metabolismo , Regiões Promotoras Genéticas/fisiologia
9.
Biochemistry ; 43(39): 12585-91, 2004 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-15449948

RESUMO

We have investigated the possibility of cell-fee synthesis of membrane proteins in the absence of a membrane and in the presence of detergent. We used the bacterial mechanosensitive channel MscL, a homopentamer, as a model protein. A wide range of nonionic or zwitterionic detergents, Triton X-100, Tween 20, Brij 58p, n-dodecyl beta-D-maltoside, and CHAPS, were compatible with cell-free synthesis, while n-octyl beta-D-glucoside and deoxycholate had an inhibitory effect. In vitro synthesis in the presence of Triton X-100 yielded milligram amounts of MscL per milliliter of lysate. Cross-linking experiments showed that the protein was able to oligomerize in detergents. When the purified protein was reconstituted in liposomes and studied by the patch-clamp technique, its activity at the single-molecule level was similar to that of the recombinant protein produced in Escherichia coli. Cell-free synthesis of membrane proteins should prove a valuable tool for the production of membrane proteins whose overexpression in heterologous systems is difficult.


Assuntos
Permeabilidade da Membrana Celular , Detergentes , Proteínas de Escherichia coli/síntese química , Canais Iônicos/síntese química , Mecanotransdução Celular , Permeabilidade da Membrana Celular/genética , Sistema Livre de Células/química , Cetomacrogol , Ácidos Cólicos , Ácido Desoxicólico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Vetores Genéticos , Glucosídeos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Bicamadas Lipídicas/química , Mecanotransdução Celular/genética , Octoxinol , Técnicas de Patch-Clamp , Polímeros/síntese química , Polímeros/metabolismo , Polissorbatos , Solubilidade
10.
Biophys J ; 86(4): 2129-36, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15041653

RESUMO

MscL is a mechanosensitive channel gated by membrane tension in the lipid bilayer alone. Its structure, known from x-ray crystallography, indicates that it is a homopentamer. Each subunit comprises two transmembrane segments TM1 and TM2 connected by a periplasmic loop. The closed pore is lined by five TM1 helices. We expressed in Escherichia coli and purified two halves of the protein, each containing one of the transmembrane segments. Their electrophysiological activity was studied by the patch-clamp recording upon reconstitution in artificial liposomes. The TM2 moiety had no electrophysiological activity, whereas the TM1 half formed channels, which were not affected by membrane tension and varied in conductance between 50 and 350 pS in 100 mM KCl. Coreconstitution of the two halves of MscL however, yielded mechanosensitive channels having the same conductance as the native MscL (1500 pS), but exhibiting increased sensitivity to pressure. Our results confirm the current view on the functional role of TM1 and TM2 helices in the MscL gating and emphasize the importance of helix-helix interactions for the assembly and functional properties of the channel protein. In addition, the results indicate a crucial role of the periplasmic loop for the channel mechanosensitivity.


Assuntos
Proteínas de Escherichia coli/química , Ativação do Canal Iônico/fisiologia , Canais Iônicos/química , Lipossomos/química , Proteínas Recombinantes/química , Clonagem Molecular , Escherichia coli , Técnicas de Patch-Clamp
11.
J Biol Chem ; 277(10): 7936-44, 2002 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-11773048

RESUMO

The phytopathogenic Gram-negative bacteria Erwinia chrysanthemi secretes pectinases, which are able to degrade the pectic polymers of plant cell walls, and uses the degradation products as a carbon source for growth. We characterized a major outer membrane protein, KdgM, whose synthesis is strongly induced in the presence of pectic derivatives. The corresponding gene was characterized. Analysis of transcriptional fusions showed that the kdgM expression is controlled by the general repressor of pectinolytic genes, KdgR, by the repressor of hexuronate catabolism genes, ExuR, by the pectinase gene repressor, PecS, and by catabolite repression via the cyclic AMP receptor protein (CRP) transcriptional activator. A kdgM mutant is unable to grow on oligogalacturonides longer than trimers, and its virulence is affected. Electrophysiological experiments with planar lipid bilayers showed that KdgM behaves like a voltage-dependent porin that is slightly selective for anions and that exhibits fast block in the presence of trigalacturonate. In contrast to most porins, KdgM seems to be monomeric. KdgM has no homology with currently known porins, but proteins similar to KdgM are present in several bacteria. Therefore, these proteins might constitute a new family of porin channels.


Assuntos
Dickeya chrysanthemi/química , Pectinas/metabolismo , Porinas/biossíntese , Porinas/química , Porinas/metabolismo , Sequência de Bases , Membrana Celular/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Eletroforese em Gel de Poliacrilamida , Eletrofisiologia , Ácidos Hexurônicos/farmacologia , Potenciais da Membrana , Modelos Biológicos , Dados de Sequência Molecular , Família Multigênica , Mutação , Plasmídeos/metabolismo , Polissacarídeo-Liases/metabolismo , Porinas/genética , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico , Fatores de Tempo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...