Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Biol ; 99(8): 1291-1300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36735963

RESUMO

The era of high-throughput techniques created big data in the medical field and research disciplines. Machine intelligence (MI) approaches can overcome critical limitations on how those large-scale data sets are processed, analyzed, and interpreted. The 67th Annual Meeting of the Radiation Research Society featured a symposium on MI approaches to highlight recent advancements in the radiation sciences and their clinical applications. This article summarizes three of those presentations regarding recent developments for metadata processing and ontological formalization, data mining for radiation outcomes in pediatric oncology, and imaging in lung cancer.


Assuntos
Inteligência Artificial , Neoplasias Pulmonares , Criança , Humanos , Big Data , Mineração de Dados
2.
Database (Oxford) ; 20212021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244718

RESUMO

The Ontology for Biomedical Investigations (OBI) underwent a focused review of assay term annotations, logic and hierarchy with a goal to improve and standardize these terms. As a result, inconsistencies in W3C Web Ontology Language (OWL) expressions were identified and corrected, and additionally, standardized design patterns and a formalized template to maintain them were developed. We describe here this informative and productive process to describe the specific benefits and obstacles for OBI and the universal lessons for similar projects.


Assuntos
Ontologias Biológicas , Idioma , Padrões de Referência
4.
iScience ; 24(4): 102361, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33870146

RESUMO

With the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated experiments. The pipeline includes quality control, read trimming, mapping, and gene quantification steps, culminating in the detection of differentially expressed genes. This data analysis pipeline and the results of its execution using data submitted to GeneLab are now all publicly available through the GeneLab database. We present here the full details and rationale for the construction of this pipeline in order to promote transparency, reproducibility, and reusability of pipeline data; to provide a template for data processing of future spaceflight-relevant datasets; and to encourage cross-analysis of data from other databases with the data available in GeneLab.

5.
mSystems ; 6(1)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622857

RESUMO

Microbiome samples are inherently defined by the environment in which they are found. Therefore, data that provide context and enable interpretation of measurements produced from biological samples, often referred to as metadata, are critical. Important contributions have been made in the development of community-driven metadata standards; however, these standards have not been uniformly embraced by the microbiome research community. To understand how these standards are being adopted, or the barriers to adoption, across research domains, institutions, and funding agencies, the National Microbiome Data Collaborative (NMDC) hosted a workshop in October 2019. This report provides a summary of discussions that took place throughout the workshop, as well as outcomes of the working groups initiated at the workshop.

6.
Nucleic Acids Res ; 49(D1): D1515-D1522, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33080015

RESUMO

The mission of NASA's GeneLab database (https://genelab.nasa.gov/) is to collect, curate, and provide access to the genomic, transcriptomic, proteomic and metabolomic (so-called 'omics') data from biospecimens flown in space or exposed to simulated space stressors, maximizing their utilization. This large collection of data enables the exploration of molecular network responses to space environments using a systems biology approach. We review here the various components of the GeneLab platform, including the new data repository web interface, and the GeneLab Online Data Entry (GEODE) web portal, which will support the expansion of the database in the future to include companion non-omics assay data. We discuss our design for GEODE, particularly how it promotes investigators providing more accurate metadata, reducing the curation effort required of GeneLab staff. We also introduce here a new GeneLab Application Programming Interface (API) specifically designed to support tools for the visualization of processed omics data. We review the outreach efforts by GeneLab to utilize the spaceflight data in the repository to generate novel discoveries and develop new hypotheses, including spearheading data analysis working groups, and a high school student training program. All these efforts are aimed ultimately at supporting precision risk management for human space exploration.


Assuntos
Bases de Dados Genéticas , Genoma , Software , Ausência de Peso , Animais , Astronautas , Bactérias/genética , Bactérias/metabolismo , Peixes/genética , Peixes/metabolismo , Regulação da Expressão Gênica , Humanos , Disseminação de Informação , Insetos/genética , Insetos/metabolismo , Internet , Camundongos , Nematoides/genética , Nematoides/metabolismo , Plantas/genética , Plantas/metabolismo , Voo Espacial , Simulação de Ausência de Peso
7.
J Vis Exp ; (143)2019 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-30688299

RESUMO

Performing biological experiments in space requires special accommodations and procedures to ensure that these investigations are performed effectively and efficiently. Moreover, given the infrequency of these experiments it is imperative that their impacts be maximized. The rapid advancement of omics technologies offers an opportunity to dramatically increase the volume of data produced from precious spaceflight specimens. To capitalize on this, NASA has developed the GeneLab platform to provide unrestricted access to spaceflight omics data and encourage its widespread analysis. Rodents (both rats and mice) are common model organisms used by scientists to investigate space-related biological impacts. The enclosure that house rodents during spaceflight are called Rodent Habitats (formerly Animal Enclosure Modules), and are substantially different from standard vivarium cages in their dimensions, air flow, and access to water and food. In addition, due to environmental and atmospheric conditions on the International Space Station (ISS), animals are exposed to a higher CO2 concentration. We recently reported that mice in the Rodent Habitats experience large changes in their transcriptome irrespective of whether animals were on the ground or in space. Furthermore, these changes were consistent with a hypoxic response, potentially driven by higher CO2 concentrations. Here we describe how a typical rodent experiment is performed in space, how omics data from these experiments can be accessed through the GeneLab platform, and how to identify key factors in this data. Using this process, any individual can make critical discoveries that could change the design of future space missions and activities.


Assuntos
Voo Espacial , Transcriptoma , Ausência de Peso , Acesso à Informação , Animais , Camundongos , Ratos , Estados Unidos , United States National Aeronautics and Space Administration
8.
Bioinformatics ; 35(10): 1753-1759, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30329036

RESUMO

MOTIVATION: To curate and organize expensive spaceflight experiments conducted aboard space stations and maximize the scientific return of investment, while democratizing access to vast amounts of spaceflight related omics data generated from several model organisms. RESULTS: The GeneLab Data System (GLDS) is an open access database containing fully coordinated and curated 'omics' (genomics, transcriptomics, proteomics, metabolomics) data, detailed metadata and radiation dosimetry for a variety of model organisms. GLDS is supported by an integrated data system allowing federated search across several public bioinformatics repositories. Archived datasets can be queried using full-text search (e.g. keywords, Boolean and wildcards) and results can be sorted in multifactorial manner using assistive filters. GLDS also provides a collaborative platform built on GenomeSpace for sharing files and analyses with collaborators. It currently houses 172 datasets and supports standard guidelines for submission of datasets, MIAME (for microarray), ENCODE Consortium Guidelines (for RNA-seq) and MIAPE Guidelines (for proteomics). AVAILABILITY AND IMPLEMENTATION: https://genelab.nasa.gov/.


Assuntos
Voo Espacial , Biologia Computacional , Bases de Dados Factuais , Genômica
9.
PLoS One ; 13(7): e0199621, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30044882

RESUMO

Translating fundamental biological discoveries from NASA Space Biology program into health risk from space flights has been an ongoing challenge. We propose to use NASA GeneLab database to gain new knowledge on potential systemic responses to space. Unbiased systems biology analysis of transcriptomic data from seven different rodent datasets reveals for the first time the existence of potential "master regulators" coordinating a systemic response to microgravity and/or space radiation with TGF-ß1 being the most common regulator. We hypothesized the space environment leads to the release of biomolecules circulating inside the blood stream. Through datamining we identified 13 candidate microRNAs (miRNA) which are common in all studies and directly interact with TGF-ß1 that can be potential circulating factors impacting space biology. This study exemplifies the utility of the GeneLab data repository to aid in the process of performing novel hypothesis-based research.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Voo Espacial , Transcriptoma , Fator de Crescimento Transformador beta1/metabolismo , Animais , Biomarcadores , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Camundongos , Ratos , Medição de Risco , Fator de Crescimento Transformador beta1/farmacologia , Ausência de Peso
10.
Radiat Res ; 189(6): 553-559, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29652620

RESUMO

Accurate assessment of risks of long-term space missions is critical for human space exploration. It is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from galactic cosmic rays (GCR) is a major health risk factor for astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently, there are gaps in our knowledge of the health risks associated with chronic low-dose, low-dose-rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The NASA GeneLab project ( https://genelab.nasa.gov/ ) aims to provide a detailed library of omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information on radiation exposure for ground-based studies, GeneLab is adding detailed, curated dosimetry information for spaceflight experiments. GeneLab is the first comprehensive omics database for space-related research from which an investigator can generate hypotheses to direct future experiments, utilizing both ground and space biological radiation data. The GLDS is continually expanding as omics-related data are generated by the space life sciences community. Here we provide a brief summary of the space radiation-related data available at GeneLab.


Assuntos
Biologia Computacional , Voo Espacial , Animais , Radiação Cósmica/efeitos adversos , Humanos , Controle de Qualidade , Radiometria , Medição de Risco , Transcriptoma/efeitos da radiação , Estados Unidos , United States National Aeronautics and Space Administration
11.
AMIA Annu Symp Proc ; 2018: 232-241, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30815061

RESUMO

Omics data sharing is crucial to the biological research community, and the last decade or two has seen a huge rise in collaborative analysis systems, databases, and knowledge bases for omics and other systems biology data. We assessed the "FAIRness" of NASA's GeneLab Data Systems (GLDS) along with four similar kinds of systems in the research omics data domain, using 14 FAIRness metrics. The range of overall FAIRness scores was 6-12 (out of 14), average 10.1, and standard deviation 2.4. The range of Pass ratings for the metrics was 29-79%, Partial Pass 0-21%, and Fail 7-50%. The systems we evaluated performed the best in the areas of data findability and accessibility, and worst in the area of data interoperability. Reusability of metadata, in particular, was frequently not well supported. We relate our experiences implementing semantic integration of omics data from some of the assessed systems for federated querying and retrieval functions, given their shortcomings in data interoperability. Finally, we propose two new principles that Big Data system developers, in particular, should consider for maximizing data accessibility.


Assuntos
Acesso à Informação , Biologia Computacional , Sistemas de Dados , Big Data , Bases de Dados Factuais/normas , Interoperabilidade da Informação em Saúde/normas , Disseminação de Informação , Armazenamento e Recuperação da Informação , Semântica
12.
J Am Med Inform Assoc ; 9(6): 637-52, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12386114

RESUMO

OBJECTIVE: To evaluate a new system, ISAID (Internet-based Semi-automated Indexing of Documents), and to generate textbook indexes that are more detailed and more useful to readers. DESIGN: Pilot evaluation: simple, nonrandomized trial comparing ISAID with manual indexing methods. Methods evaluation: randomized, cross-over trial comparing three versions of ISAID and usability survey. PARTICIPANTS: Pilot evaluation: two physicians. Methods evaluation: twelve physicians, each of whom used three different versions of the system for a total of 36 indexing sessions. MEASUREMENTS: Total index term tuples generated per document per minute (TPM), with and without adjustment for concordance with other subjects; inter-indexer consistency; ratings of the usability of the ISAID indexing system. RESULTS: Compared with manual methods, ISAID decreased indexing times greatly. Using three versions of ISAID, inter-indexer consistency ranged from 15% to 65% with a mean of 41%, 31%, and 40% for each of three documents. Subjects using the full version of ISAID were faster (average TPM: 5.6) and had higher rates of concordant index generation. There were substantial learning effects, despite our use of a training/run-in phase. Subjects using the full version of ISAID were much faster by the third indexing session (average TPM: 9.1). There was a statistically significant increase in three-subject concordant indexing rate using the full version of ISAID during the second indexing session (p < 0.05). SUMMARY: Users of the ISAID indexing system create complex, precise, and accurate indexing for full-text documents much faster than users of manual methods. Furthermore, the natural language processing methods that ISAID uses to suggest indexes contributes substantially to increased indexing speed and accuracy.


Assuntos
Indexação e Redação de Resumos/métodos , Armazenamento e Recuperação da Informação , Livros de Texto como Assunto , Atitude Frente aos Computadores , Comportamento do Consumidor , Processamento Eletrônico de Dados , Inquéritos e Questionários , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...