Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(23): 34279-34289, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182901

RESUMO

With an ever-increasing interest in secure and reliable free-space optical communication, upconversion detectors enabled through nonlinear optical processes are an attractive route to transmitting data as a mid-infrared signal. This spectral region is known to have a higher transmissivity through the atmosphere. In this work, we present an upconversion scheme for detection in the silicon absorption band using magnesium-oxide doped periodically poled lithium niobate to generate 21 mW of a 3.4 µm signal from commercial laser sources using a difference frequency generation process. Following a further nonlinear frequency conversion, via sum-frequency generation, the resulting signal at 809 nm is detected. We achieve >50 µW of signal and bit error rates of 10-7 from a single-pass nonlinear conversion for both the transmitter and receiver systems without the need for additional optical amplifiers at the receiving end. The error rates due to potentially reduced laser powers at the receiver end are investigated and laser noise transfer through our system is discussed.

2.
Opt Express ; 28(15): 21382-21390, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752417

RESUMO

Periodically poled lithium niobate (PPLN) waveguides are a proven and popular means for efficient wavelength conversion. However, conventional PPLN waveguides typically have small mode field diameters (MFD) (≲6 µm) or significant insertion and/or propagation losses, limiting their ability to operate at multi-watt power levels. In this work we utilise zinc indiffused PPLN ridge waveguides that have a larger MFD, favourable pump/SHG modal overlap, and low insertion losses. Here for the first time, we have demonstrated continuous wave (CW) spectral narrowing from a PPLN waveguide, both with high efficiency and multi-watt second harmonic generation (SHG). 2.5 W of 780 nm has been produced by SHG of an amplified 1560 nm telecom laser with a device efficiency of 58% in a 4.0-cm long ridge waveguide. We have modelled conversion efficiency and applied experimentally measured waveguide parameters to show excellent agreement to the SHG spectra. Spectral narrowing of the full width half maximum (FWHM) of 35.7% has been measured as the nonlinear drive is increased. This work demonstrates that single-pass, multi-watt, CW SHG at 780 nm is feasible from our PPLN waveguide in the large conversion regime.

3.
Opt Express ; 28(14): 21247-21259, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680169

RESUMO

A blazed chirped Bragg grating in a planar silica waveguide device was used to create an integrated diffractive element for a spectrometer. The grating diffracts light from a waveguide and creates a wavelength dependent focus in a manner similar to a bulk diffraction grating spectrometer. An external imaging system is used to analyse the light, later device iterations plan to integrate detectors to make a fully integrated spectrometer. Devices were fabricated with grating period chirp rates in excess of 100 nm mm-1, achieving a focal length of 5.5 mm. Correction of coma aberrations resulted in a device with a footprint of 20 mm×10 mm, a peak FWHM resolution of 1.8 nm, a typical FWHM resolution of 2.6 nm and operating with a 160 nm bandwidth centered at 1550 nm.

4.
Appl Opt ; 59(16): 4921-4926, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32543488

RESUMO

We present the design and characterization of a zinc-indiffused periodically poled lithium-niobate ridge waveguide for second-harmonic generation of ∼390nm light from 780 nm. We use a newly developed, broadband near-infrared vertical external-cavity surface-emitting laser (VECSEL) to investigate the potential for lower-footprint nonlinear optical pump sources as an alternative to larger commercial laser systems. We demonstrate a VECSEL with an output power of 500 mW, containing an intracavity birefringent filter for spectral narrowing and wavelength selection. In this first demonstration of using a VECSEL to pump a nonlinear waveguide, we present the ability to generate 1 mW of ∼390nm light with further potential for increased efficiency and size reduction.

5.
Opt Express ; 27(17): 24538-24544, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31510341

RESUMO

We have demonstrated the first MgO:PPLN ridge waveguides based on ZnO indiffusion and dicing. The fabrication process utilizes ductile regime dicing of a planar waveguide layer producing second harmonic generation (SHG) devices with a near-symmetric sinc2 spectral profile, indicating highly uniform 40 mm long devices. A near circular pump mode is also obtained enabling efficient coupling to single mode telecommunication fibers. A conversion efficiency of 145%/W, for 1560-780 nm SHG, has been measured.

6.
Opt Lett ; 42(19): 3741-3744, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957116

RESUMO

In this Letter, experimental evidence is provided for an enhanced thermal sensitivity for a double thermal regeneration feature in fiber Bragg gratings fabricated by direct ultraviolet (UV) writing. Here 47 gratings of varying fluence and wavelength were written along a double-clad, germanium-doped core fiber. Subsequently thermal processing without hydrogen loading the fiber was performed and thermal treatment was carried out in a pure oxygen environment. Thermal sensitivity for the double regeneration increased from 13.6±0.3 pm/°C to 21.3±0.2 pm/°C. Furthermore, one of the highest nominal fluence gratings, #45, exhibited a regeneration factor of 1.73.

7.
Opt Express ; 24(8): 8391-8, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27137276

RESUMO

An external cavity diode laser is demonstrated using a Bragg grating written into a novel integrated optical fiber platform as the external cavity. The cavity is fabricated using flame-hydrolysis deposition to bond a photosensitive fiber to a silica-on-silicon wafer, and a grating written using direct UV-writing. The laser operates on a single mode at the acetylene P13 line (1532.83 nm) with 9 mW output power. The noise properties of the laser are characterized demonstrating low linewidth operation (< 14 kHz) and superior relative intensity noise characteristics when compared to a commercial tunable external cavity diode laser.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA