Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
IEEE Trans Biomed Eng ; PP2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557627

RESUMO

OBJECTIVES: Data scarcity and domain shifts lead to biased training sets that do not accurately represent deployment conditions. A related practical problem is cross-modal image segmentation, where the objective is to segment unlabelled images using previously labelled datasets from other imaging modalities. METHODS: We propose a cross-modal segmentation method based on conventional image synthesis boosted by a new data augmentation technique called Generative Blending Augmentation (GBA). GBA leverages a SinGAN model to learn representative generative features from a single training image to diversify realistically tumor appearances. This way, we compensate for image synthesis errors, subsequently improving the generalization power of a downstream segmentation model. The proposed augmentation is further combined to an iterative self-training procedure leveraging pseudo labels at each pass. RESULTS: The proposed solution ranked first for vestibular schwannoma (VS) segmentation during the validation and test phases of the MICCAI CrossMoDA 2022 challenge, with best mean Dice similarity and average symmetric surface distance measures. CONCLUSION AND SIGNIFICANCE: Local contrast alteration of tumor appearances and iterative self-training with pseudo labels are likely to lead to performance improvements in a variety of segmentation contexts.

2.
Ann Vasc Surg ; 99: 186-192, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37717818

RESUMO

BACKGROUND: Endovascular treatment is continuously gaining ground in vascular surgery procedures. However, current patient radiation dose estimation does not take into account the exact patient morphology and organs' composition. Monte Carlo (MC) simulation can accurately estimate the dose by recreating the irradiation process generated during X-ray-guided interventions. This study aimed to validate the MC simulation models by comparing simulated and measured dose distributions in endovascular aortic aneurysm repair (EVAR) procedures. METHODS: We conducted a clinical study in patients treated for EVAR. Patient dose measurements were taken with passive dosimeters using Optically Stimulated Luminescence technology in 4 specific anatomical points on the skin: xiphoid process, pubic symphysis, right and left iliac crest. Dose measurements were compared to the corresponding simulated doses with the Geant4 Application for Emission Tomography (GATE) and GPU Geant4-based Monte Carlo Simulations (GGEMS) MC simulations softwares. The MC simulation took as input the computed tomography scan of the patient and the parameters of the imaging system (orientation angles, tube voltage, and aluminum filtration) and gives as output the three-dimensional (3D) dose map for each patient and angulation. RESULTS: A good agreement with real doses was found for doses simulated by the MC GATE method (P < 0.0001; r = 0.97; 95% confidence interval [CI] [0.96-0.98]), as well as for doses simulated by the GGEMS method (P < 0.0001; r = 0.96; 95% CI [0.94-0.97]). The mean relative error for all measurements was 5 ± 5% in the MC GATE group and 6 ± 5% in the GGEMS group. Process execution on GGEMS (6 sec) was faster than the GATE MC simulation (5 hr). CONCLUSION: Considering the current imaging settings, this study shows the potential of using the GATE and GGEMS MC simulations platforms to model the 3D dose distributions during EVAR procedures.


Assuntos
Procedimentos Endovasculares , Software , Humanos , Doses de Radiação , Raios X , Resultado do Tratamento , Método de Monte Carlo , Procedimentos Endovasculares/efeitos adversos
3.
Phys Med Biol ; 68(16)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37433326

RESUMO

Objective.Patient dose estimation in x-ray-guided interventions is essential to prevent radiation-induced biological side effects. Current dose monitoring systems estimate the skin dose based in dose metrics such as the reference air kerma. However, these approximations do not take into account the exact patient morphology and organs composition. Furthermore, accurate organ dose estimation has not been proposed for these procedures. Monte Carlo simulation can accurately estimate the dose by recreating the irradiation process generated during the x-ray imaging, but at a high computation time, limiting an intra-operative application. This work presents a fast deep convolutional neural network trained with MC simulations for patient dose estimation during x-ray-guided interventions.Approach.We introduced a modified 3D U-Net that utilizes a patient's CT scan and the numerical values of imaging settings as input to produce a Monte Carlo dose map. To create a dataset of dose maps, we simulated the x-ray irradiation process for the abdominal region using a publicly available dataset of 82 patient CT scans. The simulation involved varying the angulation, position, and tube voltage of the x-ray source for each scan. We additionally conducted a clinical study during endovascular abdominal aortic repairs to validate the reliability of our Monte Carlo simulation dose maps. Dose measurements were taken at four specific anatomical points on the skin and compared to the corresponding simulated doses. The proposed network was trained using a 4-fold cross-validation approach with 65 patients, and evaluating the performance on the remaining 17 patients during testing.Main results.The clinical validation demonstrated a average error within the anatomical points of 5.1%. The network yielded test errors of 11.5 ± 4.6% and 6.2 ± 1.5% for peak and average skin doses, respectively. Furthermore, the mean errors for the abdominal region and pancreas doses were 5.0 ± 1.4% and 13.1 ± 2.7%, respectively.Significance.Our network can accurately predict a personalized 3D dose map considering the current imaging settings. A short computation time was achieved, making our approach a potential solution for dose monitoring and reporting commercial systems.


Assuntos
Aprendizado Profundo , Humanos , Doses de Radiação , Raios X , Reprodutibilidade dos Testes , Imagens de Fantasmas , Método de Monte Carlo
4.
J Appl Clin Med Phys ; 24(8): e13991, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37232048

RESUMO

PURPOSE: To evaluate deep learning (DL)-based deformable image registration (DIR) for dose accumulation during radiotherapy of prostate cancer patients. METHODS AND MATERIALS: Data including 341 CBCTs (209 daily, 132 weekly) and 23 planning CTs from 23 patients was retrospectively analyzed. Anatomical deformation during treatment was estimated using free-form deformation (FFD) method from Elastix and DL-based VoxelMorph approaches. The VoxelMorph method was investigated using anatomical scans (VMorph_Sc) or label images (VMorph_Msk), or the combination of both (VMorph_Sc_Msk). Accumulated doses were compared with the planning dose. RESULTS: The DSC ranges, averaged for prostate, rectum and bladder, were 0.60-0.71, 0.67-0.79, 0.93-0.98, and 0.89-0.96 for the FFD, VMorph_Sc, VMorph_Msk, and VMorph_Sc_Msk methods, respectively. When including both anatomical and label images, VoxelMorph estimated more complex deformations resulting in heterogeneous determinant of Jacobian and higher percentage of deformation vector field (DVF) folding (up to a mean value of 1.90% in the prostate). Large differences were observed between DL-based methods regarding estimation of the accumulated dose, showing systematic overdosage and underdosage of the bladder and rectum, respectively. The difference between planned mean dose and accumulated mean dose with VMorph_Sc_Msk reached a median value of +6.3 Gy for the bladder and -5.1 Gy for the rectum. CONCLUSION: The estimation of the deformations using DL-based approach is feasible for male pelvic anatomy but requires the inclusion of anatomical contours to improve organ correspondence. High variability in the estimation of the accumulated dose depending on the deformable strategy suggests further investigation of DL-based techniques before clinical deployment.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Planejamento da Radioterapia Assistida por Computador , Humanos , Masculino , Tomografia Computadorizada de Feixe Cônico , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica
5.
Int J Med Robot ; 19(1): e2465, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36177788

RESUMO

BACKGROUND: Low-dose rate brachytherapy is the referent treatment for early-stage prostate cancer and consists in manually inserting radioactive seeds within the organ to destroy tumorous cells. This treatment is inaccurate leading to side effects. Researchers developed robots to improve this technique. Despite ameliorating accuracy, they cannot be clinically used because of size and acceptability. Therefore, a 6-DOF parallel and co-manipulated robot is proposed to meet these requirements. METHODS: To fulfil the application requirements, a compact design was modelled. The robot's optimal dimensions were defined by establishing kinematics and implementing genetic algorithm. The robot's relevance was evaluated by measuring workspace and needle placement errors. RESULTS: The robot fits into a cube of 300 × 300 × 300 mm3 and provides a free-singularity workspace of 55 × 55 × 150 mm3 with a possible end-effector rotation of 15° and a needle placement error <3 mm. CONCLUSION: The results are promising and prove that our robot fulfils the application requirements and presents a beneficial alternative to the manual procedure.


Assuntos
Braquiterapia , Neoplasias da Próstata , Robótica , Masculino , Humanos , Robótica/métodos , Braquiterapia/métodos , Agulhas , Fenômenos Biomecânicos , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/cirurgia
6.
Cancers (Basel) ; 14(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35954366

RESUMO

Introduction: In patients treated with radiotherapy for locally advanced lung cancer, respect for dose constraints to organs at risk (OAR) insufficiently protects patients from acute pulmonary toxicity (APT), such toxicities being associated with a potential impact on the treatment's completion and the patient's quality of life. Dosimetric planning does not take into account regional lung functionality. An APT prediction model combining usual dosimetry features with the mean dose (DMeanPmap) received by a voxel-based volume (Pmap) localized in the posterior right lung has been previously developed. A DMeanPmap of ≥30.3 Gy or a predicted APT probability (ProbAPT) of ≥8% were associated with a higher risk of APT. In the present study, the authors aim to demonstrate the possibility of decreasing the DMeanPmap via a volumetric arctherapy (VMAT)-based adapted planning and evaluate the impact on the risk of APT. Methods: Among the 207 patients included in the initial study, only patients who presented with APT of ≥grade 2 and with a probability of APT ≥ 8% based on the prediction model were included. Dosimetry planning was optimized with a new constraint (DMeanPmap < 30.3 Gy) added to the usual constraints. The initial and optimized treatment plans were compared using the t-test for the independent variables and the non-parametric Mann−Whitney U test otherwise, regarding both doses to the OARs and PTV (Planning Target Volume) coverage. Conformity and heterogeneity indexes were also compared. The risk of APT was recalculated using the new dosimetric features and the APT prediction model. Results: Dosimetric optimization was considered successful for 27 out of the 44 included patients (61.4%), meaning the dosimetric constraint on the Pmap region was achieved without compromising the PTV coverage (p = 0.61). The optimization significantly decreased the median DMeanPmap from 28.8 Gy (CI95% 24.2−33.4) to 22.1 Gy (CI95% 18.3−26.0). When recomputing the risk of APT using the new dosimetric features, the optimization significantly reduced the risk of APT (p < 0.0001) by reclassifying 43.2% (19/44) of the patients. Conclusion: Our approach appears to be both easily implementable on a daily basis and efficient at reducing the risk of APT. Regional radiosensitivity should be considered in usual lung dose constraints, opening the possibility of new treatment strategies, such as dose escalation or innovative treatment associations.

7.
Med Phys ; 49(11): 6930-6944, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36000762

RESUMO

PURPOSE: Segmenting organs in cone-beam CT (CBCT) images would allow to adapt the radiotherapy based on the organ deformations that may occur between treatment fractions. However, this is a difficult task because of the relative lack of contrast in CBCT images, leading to high inter-observer variability. Deformable image registration (DIR) and deep-learning based automatic segmentation approaches have shown interesting results for this task in the past years. However, they are either sensitive to large organ deformations, or require to train a convolutional neural network (CNN) from a database of delineated CBCT images, which is difficult to do without improvement of image quality. In this work, we propose an alternative approach: to train a CNN (using a deep learning-based segmentation tool called nnU-Net) from a database of artificial CBCT images simulated from planning CT, for which it is easier to obtain the organ contours. METHODS: Pseudo-CBCT (pCBCT) images were simulated from readily available segmented planning CT images, using the GATE Monte Carlo simulation. CT reference delineations were copied onto the pCBCT, resulting in a database of segmented images used to train the neural network. The studied segmentation contours were: bladder, rectum, and prostate contours. We trained multiple nnU-Net models using different training: (1) segmented real CBCT, (2) pCBCT, (3) segmented real CT and tested on pseudo-CT (pCT) generated from CBCT with cycleGAN, and (4) a combination of (2) and (3). The evaluation was performed on different datasets of segmented CBCT or pCT by comparing predicted segmentations with reference ones thanks to Dice similarity score and Hausdorff distance. A qualitative evaluation was also performed to compare DIR-based and nnU-Net-based segmentations. RESULTS: Training with pCBCT was found to lead to comparable results to using real CBCT images. When evaluated on CBCT obtained from the same hospital as the CT images used in the simulation of the pCBCT, the model trained with pCBCT scored mean DSCs of 0.92 ± 0.05, 0.87 ± 0.02, and 0.85 ± 0.04 and mean Hausdorff distance 4.67 ± 3.01, 3.91 ± 0.98, and 5.00 ± 1.32 for the bladder, rectum, and prostate contours respectively, while the model trained with real CBCT scored mean DSCs of 0.91 ± 0.06, 0.83 ± 0.07, and 0.81 ± 0.05 and mean Hausdorff distance 5.62 ± 3.24, 6.43 ± 5.11, and 6.19 ± 1.14 for the bladder, rectum, and prostate contours, respectively. It was also found to outperform models using pCT or a combination of both, except for the prostate contour when tested on a dataset from a different hospital. Moreover, the resulting segmentations demonstrated a clinical acceptability, where 78% of bladder segmentations, 98% of rectum segmentations, and 93% of prostate segmentations required minor or no corrections, and for 76% of the patients, all structures of the patient required minor or no corrections. CONCLUSION: We proposed to use simulated CBCT images to train a nnU-Net segmentation model, avoiding the need to gather complex and time-consuming reference delineations on CBCT images.


Assuntos
Aprendizado Profundo , Humanos , Masculino , Próstata/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico
8.
Int J Comput Assist Radiol Surg ; 17(12): 2357-2364, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35877018

RESUMO

PURPOSE: Hybrid surgeries, allowing real-time visualization of patient inner anatomy, are possible through the use of intraoperative X-ray imaging. However, the intensive use of X-rays can have undesired consequences for the clinicians or the patient in the operating room (OR). METHODS: In this paper, we provide a tool to visualize the X-rays and to optimally place protective shields in the hybrid operating room to reduce the clinician's dose according to their most sensitive body parts. We first acquire measurements in a hybrid operating room with dosimeters placed at different locations on a mannequin simulating a clinician. We demonstrate that a small displacement of a protective shield has significant consequences on the dose received by a clinician. Then, we reproduce the scene virtually and use Monte Carlo simulations to estimate the dose received by the clinician. Finally, we optimally place protective shields with a Nelder-Mead-based numerical optimization algorithm. RESULTS: The results show a high sensitivity of the clinician's dose to protective shield placement. Numerical optimization of the shields' placement can help to reduce the dose and show a decrease between 79 and 89% of the exposition when comparing no external shield protection and our optimal external shield position. CONCLUSION: Our work can help to raise awareness of the risks induced by X-rays during intraoperative surgery and reduce the dose received by the clinicians. In future work, our approach can be linked with human pose estimation algorithms to trace surgeons' moves, estimate dynamically the dose and summarize it in a surgical report, giving the dose for important organs.


Assuntos
Raios X , Humanos , Doses de Radiação , Método de Monte Carlo , Radiografia , Imagens de Fantasmas
9.
Cancers (Basel) ; 13(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34771479

RESUMO

This study aims to validate GATE and GGEMS simulation toolkits for brachytherapy applications and to provide accurate models for six commercial brachytherapy seeds, which will be freely available for research purposes. The AAPM TG-43 guidelines were used for the validation of two Low Dose Rate (LDR), three High Dose Rate (HDR), and one Pulsed Dose Rate (PDR) brachytherapy seeds. Each seed was represented as a 3D model and then simulated in GATE to produce one single Phase-Space (PHSP) per seed. To test the validity of the simulations' outcome, referenced data (provided by the TG-43) was compared with GATE results. Next, validation of the GGEMS toolkit was achieved by comparing its outcome with the GATE MC simulations, incorporating clinical data. The simulation outcomes on the radial dose function (RDF), anisotropy function (AF), and dose rate constant (DRC) for the six commercial seeds were compared with TG-43 values. The statistical uncertainty was limited to 1% for RDF, to 6% (maximum) for AF, and to 2.7% (maximum) for the DRC. GGEMS provided a good agreement with GATE when compared in different situations: (a) Homogeneous water sphere, (b) heterogeneous CT phantom, and (c) a realistic clinical case. In addition, GGEMS has the advantage of very fast simulations. For the clinical case, where TG-186 guidelines were considered, GATE required 1 h for the simulation while GGEMS needed 162 s to reach the same statistical uncertainty. This study produced accurate models and simulations of their emitted spectrum of commonly used commercial brachytherapy seeds which are freely available to the scientific community. Furthermore, GGEMS was validated as an MC GPU based tool for brachytherapy. More research is deemed necessary for the expansion of brachytherapy seed modeling.

10.
Med Phys ; 48(12): 8037-8044, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34669989

RESUMO

PURPOSE: In the last few years, there has been a growing interest in surface imaging for patient positioning in external radiation therapy. The aim of this study is to evaluate the accuracy of daily patient positioning using the Azure Kinect surface imaging. METHODS: A total of 50 fractions in 10 patients including lung, pelvic, and head and neck tumors were analyzed in real time. A rigid registration algorithm, based on the iterative closest point (ICP) approach, is employed to estimate the patient position in 6 degrees of freedom (DOF). This position is compared to the reference values obtained by the radiograph imaging. The mean setup error and its standard deviation were calculated for all measured fractions. RESULTS: The positioning error showed 1.1 ± 1.1 mm in lateral, 1.8 ± 2.1 mm in longitudinal, and 0.8 ± 1.1 mm in vertical, and 0.3°± 0.4° in yaw, 0.2°± 0.2° in pitch, and 0.2°± 0.2° in roll directions. The larger setup error occurred in pelvic regions. CONCLUSION: We have evaluated in a radiotherapy set-up considering different patient anatomical locations, a depth measurement based surface imaging solution for patient positioning considering the 6 DOF couch motion. We showed that the proposed solution allows an accurate patient positioning without the need for patient markings or the use of additional radiation dose.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Tomografia Computadorizada de Feixe Cônico , Humanos , Posicionamento do Paciente , Erros de Configuração em Radioterapia
11.
Radiother Oncol ; 164: 43-49, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34547351

RESUMO

INTRODUCTION: (Chemo)-radiotherapy is the standard treatment for patients with locally advanced lung cancer (LALC) not accessible to surgery. Despite strict application of dose constraints, acute toxicities such as acute pulmonary toxicity (APT) remain frequent, and may impact treatment's compliance and patients' quality of life. Previously, on a population treated with intensity-modulated photon therapy or passive scattering proton therapy, spatial dose patterns associated with APT were identified in the lower lungs, especially in the posterior right lung. In the present study, we aim to define these spatial dose patterns on a retrospective cohort treated by volumetric-arctherapy (VMAT) and to validate our findings prospectively. METHODS: For the training cohort, we retrospectively included all patients treated in our institution by VMAT for a LALC between 2015 and 2018. APT was scored according to the CTCAE v4.0 scale. All dose maps were registered to a thorax phantom using a segmentation-based elastic registration. Voxel-based analysis of local dose differences was performed with a non-parametric permutation test accounting for n = 10.000 permutations, producing a 3-dimensional significance maps on which clusters of voxels that exhibited significant dose differences (p < 0.05) between the two toxicity groups (APT ≥ grade 2 vs APT < grade 2) were identified. A prediction model (Pmap-Model) was then built using a neural network approach and then applied to an observational prospective cohort for validation. The model was evaluated using the Area under the curve (AUC) and the balanced accuracy (Bacc: mean of the sensitivity and specificity). RESULTS: 165 and 42 patients were included in the training and validation cohorts, with respective APT rates of 22.4% and 19.1%. In the training cohort, a cluster of voxels (Pmap-region) was identified in the posterior right lung. In the training cohort, the Pmap-Model combining 11 features among which the mean dose to the Pmap-region resulted in an AUC of 0.99 and a Bacc of 99.2 using an 8% probability threshold. Using the same voxel cluster on the validation cohort, the Pmap-model resulted in an AUC of 0.81 and a Bacc of 82.0. CONCLUSION: Our APT-prediction model was successfully validated in a prospective cohort treated by VMAT. Regional radiosensitivity should be considered in usual lung dose constraints, opening the possibility of easily implementable adaptive dosimetry planning.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radioterapia de Intensidade Modulada , Humanos , Neoplasias Pulmonares/radioterapia , Qualidade de Vida , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada/efeitos adversos , Estudos Retrospectivos
12.
J Pers Med ; 11(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064918

RESUMO

Standard treatment for locally advanced cervical cancer (LACC) is chemoradiotherapy followed by brachytherapy. Despite radiation therapy advances, the toxicity rate remains significant. In this study, we compared the prediction of toxicity events after radiotherapy for locally advanced cervical cancer (LACC), based on either dose-volume histogram (DVH) parameters or the use of a radiomics approach applied to dose maps at the voxel level. Toxicity scores using the Common Terminology Criteria for Adverse Events (CTCAE v4), spatial dose distributions, and usual clinical predictors for the toxicity of 102 patients treated with chemoradiotherapy followed by brachytherapy for LACC were used in this study. In addition to usual DVH parameters, 91 radiomic features were extracted from rectum, bladder and vaginal 3D dose distributions, after discretization into a fixed bin width of 1 Gy. They were evaluated for predictive modelling of rectal, genitourinary (GU) and vaginal toxicities (grade ≥ 2). Logistic Normal Tissue Complication Probability (NTCP) models were derived using clinical parameters only or combinations of clinical, DVH and radiomics. For rectal acute/late toxicities, the area under the curve (AUC) using clinical parameters was 0.53/0.65, which increased to 0.66/0.63, and 0.76/0.87, with the addition of DVH or radiomics parameters, respectively. For GU acute/late toxicities, the AUC increased from 0.55/0.56 (clinical only) to 0.84/0.90 (+DVH) and 0.83/0.96 (clinical + DVH + radiomics). For vaginal acute/late toxicities, the AUC increased from 0.51/0.57 (clinical only) to 0.58/0.72 (+DVH) and 0.82/0.89 (clinical + DVH + radiomics). The predictive performance of NTCP models based on radiomics features was higher than the commonly used clinical and DVH parameters. Dosimetric radiomics analysis is a promising tool for NTCP modelling in radiotherapy.

13.
Cancers (Basel) ; 13(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802499

RESUMO

PURPOSE: Stereotactic radiotherapy (SRT) has become widely accepted as a treatment of choice for patients with a small number of brain metastases that are of an acceptable size, allowing for better target dose conformity, resulting in high local control rates and better sparing of organs at risk. An MRI-only workflow could reduce the risk of misalignment between magnetic resonance imaging (MRI) brain studies and computed tomography (CT) scanning for SRT planning, while shortening delays in planning. Given the absence of a calibrated electronic density in MRI, we aimed to assess the equivalence of synthetic CTs generated by a generative adversarial network (GAN) for planning in the brain SRT setting. METHODS: All patients with available MRIs and treated with intra-cranial SRT for brain metastases from 2014 to 2018 in our institution were included. After co-registration between the diagnostic MRI and the planning CT, a synthetic CT was generated using a 2D-GAN (2D U-Net). Using the initial treatment plan (Pinnacle v9.10, Philips Healthcare), dosimetric comparison was performed using main dose-volume histogram (DVH) endpoints in respect to ICRU 91 guidelines (Dmax, Dmean, D2%, D50%, D98%) as well as local and global gamma analysis with 1%/1 mm, 2%/1 mm and 2%/2 mm criteria and a 10% threshold to the maximum dose. t-test analysis was used for comparison between the two cohorts (initial and synthetic dose maps). RESULTS: 184 patients were included, with 290 treated brain metastases. The mean number of treated lesions per patient was 1 (range 1-6) and the median planning target volume (PTV) was 6.44 cc (range 0.12-45.41). Local and global gamma passing rates (2%/2 mm) were 99.1 CI95% (98.1-99.4) and 99.7 CI95% (99.6-99.7) respectively (CI: confidence interval). DVHs were comparable, with no significant statistical differences regarding ICRU 91's endpoints. CONCLUSIONS: Our study is the first to compare GAN-generated CT scans from diagnostic brain MRIs with initial CT scans for the planning of brain stereotactic radiotherapy. We found high similarity between the planning CT and the synthetic CT for both the organs at risk and the target volumes. Prospective validation is under investigation at our institution.

14.
Phys Med Biol ; 66(10)2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33770774

RESUMO

Built on top of the Geant4 toolkit, GATE is collaboratively developed for more than 15 years to design Monte Carlo simulations of nuclear-based imaging systems. It is, in particular, used by researchers and industrials to design, optimize, understand and create innovative emission tomography systems. In this paper, we reviewed the recent developments that have been proposed to simulate modern detectors and provide a comprehensive report on imaging systems that have been simulated and evaluated in GATE. Additionally, some methodological developments that are not specific for imaging but that can improve detector modeling and provide computation time gains, such as Variance Reduction Techniques and Artificial Intelligence integration, are described and discussed.


Assuntos
Inteligência Artificial , Software , Simulação por Computador , Método de Monte Carlo , Tomografia Computadorizada por Raios X
15.
Med Phys ; 48(1): 142-155, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33118190

RESUMO

PURPOSE: Monitoring of physiological parameters is a major concern in Intensive Care Units (ICU) given their role in the assessment of vital organ function. Within this context, one issue is the lack of efficient noncontact techniques for respiratory monitoring. In this paper, we present a novel noncontact solution for real-time respiratory monitoring and function assessment of ICU patients. METHODS: The proposed system uses a Time-of-Flight depth sensor to analyze the patient's chest wall morphological changes in order to estimate multiple respiratory function parameters. The automatic detection of the patient's torso is also proposed using a deep neural network model trained on the COCO dataset. The evaluation of the proposed system was performed on a mannequin and on 16 mechanically ventilated patients (a total of 216 recordings) admitted in the ICU of the Brest University Hospital. RESULTS: The estimation of respiratory parameters (respiratory rate and tidal volume) showed high correlation with the reference method (r = 0.99; P < 0.001 and r = 0.99; P < 0.001) in the mannequin recordings and (r = 0.95, P < 0.001 and r = 0.90, P < 0.001) for patients. CONCLUSION: This study describes and evaluates a novel noncontact monitoring system suitable for continuous monitoring of key respiratory parameters for disease assessment of critically ill patients.


Assuntos
Cuidados Críticos , Unidades de Terapia Intensiva , Monitorização Fisiológica , Respiração , Humanos , Volume de Ventilação Pulmonar
16.
IEEE Trans Biomed Eng ; 66(4): 920-933, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30113888

RESUMO

OBJECTIVE: We present a new hybrid edge and region-based parametric deformable model, or active surface, for prostate volume segmentation in transrectal ultrasound (TRUS) images. METHODS: Our contribution is threefold. First, we develop a new edge detector derived from the radial bas-relief approach, allowing for better scalar prostate edge detection in low contrast configurations. Second, we combine an edge-based force derived from the proposed edge detector with a new region-based force driven by the Bhattacharyya gradient flow and adapted to the case of parametric active surfaces. Finally, we develop a quasi-automatic initialization technique for deformable models by analyzing the profiles of the proposed edge detector response radially to obtain initial landmark points toward which an initial surface model is warped. RESULTS: We validate our method on a set of 36 TRUS images for which manual delineations were performed by two expert radiation oncologists, using a wide variety of quantitative metrics. The proposed hybrid model achieved state-of-the-art segmentation accuracy. CONCLUSION: Results demonstrate the interest of the proposed hybrid framework for accurate prostate volume segmentation. SIGNIFICANCE: This paper presents a modular framework for accurate prostate volume segmentation in TRUS, broadening the range of available strategies to tackle this open problem.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Ultrassonografia/métodos , Algoritmos , Humanos , Masculino
17.
Int J Radiat Oncol Biol Phys ; 103(2): 503-510, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30315873

RESUMO

PURPOSE: Inverse planning is an integral part of modern low-dose-rate brachytherapy. Current clinical planning systems do not exploit the total dose information and largely use the American Association of Physicists in Medicine TG-43 dosimetry formalism to ensure clinically acceptable planning times. Thus, suboptimal plans may be derived as a result of TG-43-related dose overestimation and nonconformity with dose distribution requirements. The purpose of this study was to propose an inverse planning approach that can improve planning quality by combining dose-volume information and precision without compromising the overall execution times. METHODS AND MATERIALS: The dose map was generated by accumulating precomputed Monte Carlo (MC) dose kernels for each candidate source implantation site. The MC computational burden was reduced by using graphics processing unit acceleration, allowing accurate dosimetry calculations to be performed in the intraoperative environment. The proposed dose-volume histogram (DVH) fast simulated annealing optimization algorithm was evaluated using clinical plans that were delivered to 18 patients who underwent low-dose-rate prostate brachytherapy. RESULTS: Our method generated plans in 37.5 ± 3.2 seconds with similar prostate dose coverage, improved prostate dose homogeneity of up to 6.1%, and lower dose to the urethra of up to 4.0%. CONCLUSIONS: A DVH-based optimization algorithm using MC dosimetry was developed. The inclusion of the DVH requirements allowed for increased control over the optimization outcome. The optimal plan's quality was further improved by considering tissue heterogeneity.


Assuntos
Braquiterapia/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Simulação por Computador , Humanos , Masculino , Método de Monte Carlo , Imagens de Fantasmas , Próstata/efeitos da radiação , Controle de Qualidade , Radiometria , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Software
19.
Phys Med Biol ; 63(18): 185005, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30113313

RESUMO

In tomographic medical imaging (PET, SPECT, CT), differences in data acquisition and organization are a major hurdle for the development of tomographic reconstruction software. The implementation of a given reconstruction algorithm is usually limited to a specific set of conditions, depending on the modality, the purpose of the study, the input data, or on the characteristics of the reconstruction algorithm itself. It causes restricted or limited use of algorithms, differences in implementation, code duplication, impractical code development, and difficulties for comparing different methods. This work attempts to address these issues by proposing a unified and generic code framework for formatting, processing and reconstructing acquired multi-modal and multi-dimensional data. The proposed iterative framework processes in the same way elements from list-mode (i.e. events) and histogrammed (i.e. sinogram or other bins) data sets. Each element is processed separately, which opens the way for highly parallel execution. A unique iterative algorithm engine makes use of generic core components corresponding to the main parts of the reconstruction process. Features that are specific to different modalities and algorithms are embedded into specific components inheriting from the generic abstract components. Temporal dimensions are taken into account in the core architecture. The framework is implemented in an open-source C++ parallel platform, called CASToR (customizable and advanced software for tomographic reconstruction). Performance assessments show that the time loss due to genericity remains acceptable, being one order of magnitude slower compared to a manufacturer's software optimized for computational efficiency for a given system geometry. Specific optimizations were made possible by the underlying data set organization and processing and allowed for an average speed-up factor ranging from 1.54 to 3.07 when compared to more conventional implementations. Using parallel programming, an almost linear speed-up increase (factor of 0.85 times number of cores) was obtained in a realistic clinical PET setting. In conclusion, the proposed framework offers a substantial flexibility for the integration of new reconstruction algorithms while maintaining computation efficiency.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Software , Algoritmos , Humanos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/métodos
20.
Eur Psychiatry ; 50: 21-27, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29398564

RESUMO

We present the first results of the MINDVIEW project. An innovative imaging system for the human brain examination, allowing simultaneous acquisition of PET/MRI images, has been designed and constructed. It consists of a high sensitivity and high resolution PET scanner integrated in a novel, head-dedicated, radio frequency coil for a 3T MRI scanner. Preliminary measurements from the PET scanner show sensitivity 3 times higher than state-of-the-art PET systems that will allow safe repeated studies on the same patient. The achieved spatial resolution, close to 1 mm, will enable differentiation of relevant brain structures for schizophrenia. A cost-effective and simple method of radiopharmaceutical production from 11C-carbon monoxide and a mini-clean room has been demonstrated. It has been shown that 11C-raclopride has higher binding potential in a new VAAT null mutant mouse model of schizophrenia compared to wild type control animals. A significant reduction in TSPO binding has been found in gray matter in a small sample of drug-naïve, first episode psychosis patients, suggesting a reduced number or an altered function of immune cells in brain at early stage schizophrenia.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Transtornos Psicóticos/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Humanos , Imagem Multimodal/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...