Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 474: 134552, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38823105

RESUMO

Contamination of water bodies with heavy metals poses a significant threat to human health and the environment, requiring the development of effective treatment techniques. In this context, aluminosilicates emerge as promising sorbents due to their cost-effectiveness and natural abundance. This review provides a clear, in-depth, and comprehensive description of the structure, properties, and characteristics of aluminosilicates, supporting their application as adsorbents and highlighting their diversity and adaptability to different matrices and analytes. Furthermore, the functionalization of these materials is thoroughly addressed, detailing the techniques currently used, exposing the advantages and disadvantages of each approach, and establishing comparisons and evaluations of the performances of various functionalized aluminosilicates in the extraction of heavy metals in aqueous matrices. This work aims not only to comprehensively review numerous studies from recent years but also to identify trends in the study of such materials and inspire future research and applications in the field of contaminant removal using aluminosilicates.

2.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338998

RESUMO

Measures to endorse the adoption of eco-friendly biodegradable plastics as a response to the scale of plastic pollution has created a demand for innovative products from materials from Nature. Ionic liquids (ILs) have the ability to disrupt the hydrogen bonding network of biopolymers, increase the mobility of biopolymer chains, reduce friction, and produce materials with various morphologies and mechanical properties. Due to these qualities, ILs are considered ideal for plasticizing biopolymers, enabling them to meet a wide range of specifications for biopolymeric materials. This mini-review discusses the effect of different IL-plasticizers on the processing, tensile strength, and elasticity of materials made from various biopolymers (e.g., starch, chitosan, alginate, cellulose), and specifically covers IL-plasticized packaging materials and materials for biomedical and electrochemical applications. Furthermore, challenges (cost, scale, and eco-friendliness) and future research directions in IL-based plasticizers for biopolymers are discussed.


Assuntos
Quitosana , Líquidos Iônicos , Líquidos Iônicos/química , Plastificantes/química , Celulose/química , Biopolímeros , Quitosana/química
3.
J Hazard Mater ; 457: 131824, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37327610

RESUMO

Water ecosystem contamination from industrial pollutants is an emerging threat to both humans and native species, making it a point of global concern. In this work, fully biobased aerogels (FBAs) were developed by using low-cost cellulose filament (CF), chitosan (CS), citric acid (CA), and a simple and scalable approach, for water remediation applications. The FBAs displayed superior mechanical properties (up to ∼65 kPa m3 kg-1 specific Young's modulus and ∼111 kJ/m3 energy absorption) due to CA acting as a covalent crosslinker in addition to the natural hydrogen bonding and electrostatic interactions between CF and CS. The addition of CS and CA increased the variety of functional groups (carboxylic acid, hydroxyl and amines) on the materials' surface, resulting in super-high dye and heavy metal adsorption capacities (619 mg/g and 206 mg/g for methylene blue and copper, respectively). Further modification of FBAs with a simple approach using methyltrimethoxysilane endowed aerogel oleophilic and hydrophobic properties. The developed FBAs showed a fast performance in water and oil/organic solvents separation with more than 96% efficiency. Besides, the FBA sorbents could be regenerated and reused for multiple cycles without any significant impact on their performance. Moreover, thanks to the presence of amine groups by addition of CS, FBAs also displayed antibacterial properties by preventing the growth of Escherichia coli on their surface. This work demonstrates the preparation of FBAs from abundant, sustainable, and inexpensive natural resources for applications in wastewater purification.

4.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-37259417

RESUMO

This mini-review focuses on the various roles that ionic liquids (ILs) play in the development and applications of biopolymer-based drug delivery systems (DDSs). Biopolymers are particularly attractive as drug delivery matrices due to their biocompatibility, low immunogenicity, biodegradability, and strength, whereas ILs can assist the formation of drug delivery systems. In this work, we showcase the different strategies that were explored using ILs in biopolymer-based DDSs, including impregnation of active pharmaceutical ingredients (APIs)-ILs into biopolymeric materials, employment of the ILs to simplify the process of making the biopolymer-based DDSs, and using the ILs either as dopants or as anchoring agents.

5.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175574

RESUMO

The search for biocompatible and renewable materials for the next generation of energy devices has led to increasing interest in using biopolymers as a matrix component for the development of electric double-layer capacitors (EDLCs). However, using biopolymers as host matrices presents limitations in performance and scalability. At the same time, ionic liquids (ILs) have shown exceptional properties as non-aqueous electrolytes. This review intends to highlight the progress in integrating ILs and biopolymers for EDLC. While ILs have been used as solvents to process biopolymers and electrolyte materials, biopolymers have been utilized to provide novel chemistries of electrolyte materials via one of the following scenarios: (1) acting as host polymeric matrices for IL-support, (2) performing as polymeric fillers, and (3) serving as backbone polymer substrates for synthetic polymer grafting. Each of these scenarios is discussed in detail and supported with several examples. The use of biopolymers as electrode materials is another topic covered in this review, where biopolymers are used as a source of carbon or as a flexible support for conductive materials. This review also highlights current challenges in materials development, including improvements in robustness and conductivity, and proper dispersion and compatibility of biopolymeric and synthetic polymeric matrices for proper interface bonding.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Biopolímeros/química , Solventes , Polímeros/química , Eletrólitos/química
6.
Molecules ; 27(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36235144

RESUMO

Innovative technologies can transform what are now considered "waste streams" into feedstocks for a range of products. Indeed, the use of biomass as a source of biopolymers and chemicals currently has a consolidated economic dimension, with well-developed and regulated markets, in which the evaluation of the manufacturing processes relies on specific criteria such as purity and yield, and respects defined regulatory parameters for the process safety. In this context, ionic liquids and deep eutectic solvents have been proposed as environmentally friendly solvents for applications related to biomass waste valorization. This mini-review draws attention to some recent advancements in the use of a series of new-solvent technologies, with an emphasis on deep eutectic solvents (DESs) as key players in the development of new processes for biomass waste valorization. This work aims to highlight the role and importance of DESs in the following three strategic areas: chitin recovery from biomass and isolation of valuable chemicals and biofuels from biomass waste streams.


Assuntos
Líquidos Iônicos , Biocombustíveis , Biomassa , Quitina , Solventes Eutéticos Profundos , Solventes
7.
Molecules ; 26(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803761

RESUMO

Aqueous biphasic systems (ABS) composed of the choline alkanoate ionic liquids (ILs) choline acetate [Cho][OAc], choline propanoate [Cho][Pro], choline butyrate [Cho][But], and choline hexanoate [Cho][Hex], mixed with K3PO4 solutions at pH 7.2 and 14.5, were prepared and their phase diagrams were compared. The ability to form ABS with alkaline K3PO4 solutions decreased in the order [Cho][OAc] ≈ [Cho][Pro] > [Cho][But] > [Cho][Hex], while with neutral K3PO4 solutions, [Cho][OAc] could not form an ABS, and the other three ILs performed similarly. All of the biphasic regions of the ABS decreased with the increase in pH. 1H-NMR data indicated anion exchange between phases in ABS at neutral pH. The ABS at neutral pH were evaluated to extract the triazine herbicides simazine, cyanazine, and atrazine, and the ABS formed by [Cho][Pro] and the pH 7.2 K3PO4 solution has shown extraction recoveries higher than 90%.

8.
Molecules ; 26(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374724

RESUMO

In this study, three magnetic ionic liquids (MILs) were investigated for extraction of four estrogens, i.e., estrone (E1), estradiol (E2), estriol (E3), and ethinylestradiol (EE2), from environmental water. The cation trihexyl(tetradecyl)phosphonium ([P66614]+), selected to confer hydrophobicity to the resulting MIL, was combined with tetrachloroferrate(III), ferricyanide, and dysprosium thiocyanate to yield ([P66614][FeCl4]), ([P66614]3[Fe(CN)6]), and ([P66614]5[Dy(SCN)8]), respectively. After evaluation of various strategies to develop a liquid-liquid microextraction technique based on synthesized MILs, we placed the MILs onto a magnetic stir bar and used them as extracting solvents. After extraction, the MIL-enriched phase was dissolved in methanol and injected into an HPLC-UV for qualitative and quantitative analysis. An experimental design was used to simultaneously evaluate the effect of select variables and optimization of extraction conditions to maximize the recovery of the analytes. Under optimum conditions, limits of detection were in the range of 0.2 (for E3 and E2) and 0.5 µg L-1 (for E1), and calibration curves exhibited linearity in the range of 1-1000 µg L-1 with correlation coefficients higher than 0.998. The percent relative standard deviation (RSD) was below 5.0%. Finally, this method was used to determine concentration of estrogens in real lake and sewage water samples.


Assuntos
Estradiol/análise , Estradiol/isolamento & purificação , Líquidos Iônicos/química , Microextração em Fase Líquida/métodos , Magnetismo , Esgotos/análise , Poluentes Químicos da Água/análise , Estrogênios/análise , Estrogênios/isolamento & purificação , Esgotos/química , Poluentes Químicos da Água/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-32117907

RESUMO

Lignocellulosic biomass biorefinery is the most extensively investigated biorefinery model. At the same time, chitin, structurally similar to cellulose and the second most abundant polymer on Earth, represents a unique chemical structure that allows the direct manufacture of nitrogen-containing building blocks and intermediates, a goal not accomplishable using lignocellulosic biomass. However, the recovery, dissolution, and treatment of chitin was fairly challenging until the polymer's easy dissolution in ionic liquids (salts that are liquid at room temperature) was discovered. In this systematic review, we highlight recent developments in the processing of chitin, with a particular emphasis placed on methods conducted with the help of ionic liquids used as solvents, co-solvents, or catalysts. Such use of ionic liquids in the field of chemical transformations of chitin not only allows for shorter times and less harsh reaction conditions, but also results in different outcomes and higher product yields when compared with reactions conducted in "traditional" manner. Valorization of biomass in general, and chitin in particular, is a key enabling strategy of the circular economy, due to the importance of the sustainable production of biomass-based goods and chemicals and full chain resource efficiency. Economics is driven by the production of high-value chemicals or chemical intermediates from various biomasses, and chitinous biomass is a valuable potential resource. A fundamental "paradigm shift" will radically change the balance of oil-based chemicals to biopolymer-based chemicals, and chitin valorization is a necessary step aimed toward its full market competitiveness and flexibility.

10.
ACS Omega ; 4(5): 7938-7943, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459882

RESUMO

Six ionic liquids (ILs) were selected based on their chemical and physical properties to study the solubility of cyclosporine A. Of these, cyclosporine exhibited higher room temperature solubility in 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) than in acetone, an effective molecular solvent used to solubilize and purify cyclosporine. The solubility of cyclosporine in the ILs dramatically increased at higher temperatures, a critical factor that cannot be varied in a wide range with low boiling molecular solvents. The differences in solubility were explored for cyclosporine purification. Cyclosporine was purified up to ∼93% with n-butylammonium acetate ([C4NH3][OAc]) and could be further purified to 95% using an IL/organic solvent biphasic system. After purification, cyclosporine was recovered as an amorphous solid using the ILs.

11.
Carbohydr Polym ; 199: 228-235, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143125

RESUMO

Chitin, one of Nature's most abundant biopolymers, can be obtained by either traditional chemical pulping or by extraction using the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate. The IL extraction and coagulation process provides access to a unique chitin, with an open hydrated gel-like structure. Here, enzymatic hydrolysis of this chitin hydrogel, dried shrimp shell, chitin extracted from shrimp shells using IL and then dried, and commercial chitin was carried out using chitinase from Streptomyces griseus. The enzymatic hydrolysis of shrimp shells resulted only in the monomer N-acetylglucosamine, while much higher amounts of the dimer (N,N'-diacetylchitobiose) compared to the monomer were detected when using all forms of 'pure' chitin. Interestingly, small amounts of the trimer (N,N',N''-triacetylchitotriose) were also detected when the IL-chitin hydrogel was used as substrate. Altogether, our findings indicate that the product distribution and yield are highly dependent on the substrate selected for the reaction and its hydrated state.


Assuntos
Quitina/química , Quitinases/química , Imidazóis/química , Líquidos Iônicos/química , Acetilglucosamina/síntese química , Animais , Quitina/isolamento & purificação , Hidrólise , Penaeidae/química , Streptomyces griseus/enzimologia , Temperatura
12.
ChemistryOpen ; 7(8): 659-663, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30155400

RESUMO

Four porphyrinic ionic liquids and four higher melting salts (>100 °C) were synthesized as potential photosensitizers from highly symmetric porphyrins by introducing alkyl chains and exchanging anions to tune their solubility and singlet oxygen generation capability. Among the synthesized compounds was 5,10,15,20-tetra(4-dodecylpyridinum)porphyrin tetrakis-bis(trifluoromethylsulfonyl)-amide, a room-temperature ionic liquid that could be crystallized as a solvate with nitrobenzene.

13.
Biomacromolecules ; 19(8): 3291-3300, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29901993

RESUMO

The increasing need for biocompatible materials as supports to immobilize photosensitizer molecules for photodynamic therapy (PDT), led us to investigate the use of chitin as a support for 4,4',4″,4‴-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid) (mTCPP) for singlet oxygen production. Chitin was first extracted from shrimp shells using the ionic liquid 1-ethyl-3-methyl-imidazolium acetate ([C2mim][OAc]), coagulated as a floc into water, and then deacetylated to varying degrees of deacetylation using 4 M NaOH. The deacetylated chitin (DA-chitin) was dissolved in [C2mim][OAc] and mTCPP was covalently attached by reaction between the amino groups of DA-chitin and the carboxyl groups of mTCPP using N-(3-(dimethylamino)propyl)- N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) as activators. The resulting composite polymers were cast as a film and coagulated with water to remove IL and excess reagents, resulting in homogeneous DA-chitin/mTCPP films. Attempts to prepare films by coagulation from a solution containing chitin and mTCPP to physically entrap the porphyrin, resulted in aggregation of mTCPP in the film. The DA-chitin/mTCPP films had strong optical absorbance and their absorbance intensity could be tuned by changing the mTCPP content and degrees of deacetylation of DA-chitin in a predictive manner. In addition, metal ions (Cu2+, Zn2+, Gd3+, and Fe3+) could be easily chelated into the DA-chitin/mTCPP films through mixing metal salt solutions with the films and heating. After chelating metal ions, optical properties, such as absorption region and intensities, of the films changed, suggesting chelating metal ions could tune their optical properties. Moreover, the DA-chitin/mTCPP films could generate singlet oxygen under light irradiation and, hence, might serve as a photosensitizer in PDT. The methodology used in this study is also applicable for developing other functional biomaterial devices.


Assuntos
Absorção de Radiação , Quitina/análogos & derivados , Porfirinas/química , Oxigênio Singlete/química , Reagentes de Ligações Cruzadas/química , Luz , Fotoquimioterapia/métodos
14.
Chem Commun (Camb) ; 54(16): 2056-2059, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29417101

RESUMO

To alleviate the problem of solid salt precipitation when using inorganic bases in cross-coupling reactions, basic anions were combined with the trihexyl(tetradecyl)phosphonium ([P66614]+) cation to ensure an ionic liquid byproduct. If the starting base is also an ionic liquid, as is the case for [P66614][OH]·4MeOH, it can be used as both base and solvent.

15.
Adv Colloid Interface Sci ; 252: 55-68, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29317019

RESUMO

Over the past ten years, a next-generation approach to combat bacterial contamination has emerged: one which employs nanostructure geometry to deliver lethal mechanical forces causing bacterial cell death. In this review, we first discuss advances in both colloidal and topographical nanostructures shown to exhibit such "mechano-bactericidal" mechanisms of action. Next, we highlight work from pioneering research groups in this area of antibacterials. Finally, we provide suggestions for unexplored research topics that would benefit the field of mechano-bactericidal nanostructures. Traditionally, antibacterial materials are loaded with antibacterial agents with the expectation that these agents will be released in a timely fashion to reach their intended bacterial metabolic target at a sufficient concentration. Such antibacterial approaches, generally categorized as chemical-based, face design drawbacks as compounds diffuse in all directions, leach into the environment, and require replenishing. In contrast, due to their mechanisms of action, mechano-bactericidal nanostructures can benefit from sustainable opportunities. Namely, mechano-bactericidal efficacy needs not replenishing since they are not consumed metabolically, nor are they designed to release or leach compounds. For this same reason, however, their action is limited to the bacterial cells that have made direct contact with mechano-bactericidal nanostructures. As suspended colloids, mechano-bactericidal nanostructures such as carbon nanotubes and graphene nanosheets can pierce or slice bacterial membranes. Alternatively, surface topography such as mechano-bactericidal nanopillars and nanospikes can inflict critical membrane damage to microorganisms perched upon them, leading to subsequent cell lysis and death. Despite the infancy of this area of research, materials constructed from these nanostructures show remarkable antibacterial potential worthy of further investigation.

16.
Toxicol Sci ; 161(2): 249-265, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106695

RESUMO

The potential of the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) to dissolve a variety of biopolymers such as cellulose and chitin, makes it an attractive candidate for scaled-up industrial utilization. In fact, the first steps towards its use at industrial scale have been taken. This increases the urgency to fill the knowledge gaps in its toxicity and environmental impact in order to predict and control its environmental fate. In this mini-review, we discuss the available literature surrounding this key IL. The literature (through the analysis of toxicity of the anion and the cation separately) suggests that [C2mim][OAc] is a relatively safe choice for industrial applications. However, because the IL should be considered as a compound, with unique properties arising from the interactions between the ions, comprehensive toxicity information for this particular IL is still required. To decide, prima facie, if this IL is toxic or not, evaluation of its influence on human health and ecotoxicity is needed prior to its large scale utilization. We chose in this mini-review to focus on toxicity surrounding this IL and evaluate what is known and what is not. Here with all the information in hand, we hope that the urgent need for [C2mim][OAc] toxicological assessment before it can be used in numerous technologies is highlighted. In the near future, we expect that the assessment of toxicity and environmental fate and impact can be integrated directly into any research into the industrial utilization of this IL and any others contemplated for industrial application.


Assuntos
Segurança Química/métodos , Imidazóis/toxicidade , Líquidos Iônicos/toxicidade , Animais , Ecotoxicologia , Humanos , Tecnologia , Testes de Toxicidade/métodos
17.
Phys Chem Chem Phys ; 19(37): 25544-25554, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28901353

RESUMO

We investigated the ability of the ions comprising protic ionic liquids to strongly interact with their neutral acid and base forms through the characterization of n-butylammonium acetate ([C4NH3][OAc]) in the presence of excess n-butylamine (C4NH2) or excess acetic acid (HOAc). The conjugate and parent acid or base form new nonstoichiometric, noncovalently bound species (i.e., oligomeric ions) which change the physical and chemical properties of the resulting liquids, thus offering tunability. The effects of adding C4NH2 or HOAc to [C4NH3][OAc] on the resulting thermal and spectroscopic properties differ and suggest that C4NH2 interacts primarily with [C4NH3]+ to form 3-dimensional polymeric networks likely similar to those in H2O/[H3O]+, while HOAc interacts primarily with [OAc]- to form oligomeric ions (e.g., [H(OAc)2]-). The densities of the systems increased with the increase of acid content and reached a maximum when the acid molar fraction was 0.90, but decreased with increasing amine concentration. The viscosities decreased significantly with increasing acid or base concentration. The solvent properties of the mixtures were assessed by measuring the solubilities of benzene, ethyl acetate, diethyl ether, heptane, ibuprofen free acid, and lidocaine free base. The solubilities of the organic solutes and active pharmaceutical ingredients can be tuned with the concentration of acid or amine in the mixtures. In addition, crystallization of the active pharmaceutical ingredients can be induced with the modification of the composition of the mixtures. These observations support the usage of these mixtures for the synthesis and purification of acid or basic active pharmaceutical ingredients in the pharmaceutical industry.

18.
Phys Chem Chem Phys ; 19(39): 26934-26943, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28956042

RESUMO

The properties of double salt ionic liquids based on solutions of cholinium acetate ([Ch][OAc]), ethanolammonium acetate ([NH3(CH2)2OH][OAc]), hydroxylammonium acetate ([NH3OH][OAc]), ethylammonium acetate ([NH3CH2CH3][OAc]), and tetramethylammonium acetate ([N(CH3)4][OAc]) in 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) were investigated by NMR spectroscopy and X-ray crystallography. Through mixture preparation, the solubility of [N(CH3)4][OAc] is the lowest, and [Ch][OAc] shows a 3-fold lower solubility than the other hydroxylated ammonium acetate-based salts in [C2mim][OAc] at room temperature. NMR and X-ray crystallographic studies of the pure salts suggest that the molecular-level mechanisms governing such miscibility differences are related to the weaker interactions between the -NH3 groups and [OAc]-, even though three of these salts possess the same strong 1 : 1 hydrogen bonds between the cation -OH group and the [OAc]- ion. The formation of polyionic clusters between the anion and those cations with unsatisfied hydrogen bond donors seems to be a new tool by which the solubility of these salts in [C2mim][OAc] can be controlled.

19.
Biotechnol Biofuels ; 10: 154, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28638441

RESUMO

BACKGROUND: Biomass pretreatment using certain ionic liquids (ILs) is very efficient, generally producing a substrate that is amenable to saccharification with fermentable sugar yields approaching theoretical limits. Although promising, several challenges must be addressed before an IL pretreatment technology can become commercially viable. One of the most significant challenges is the affordable and scalable recovery and recycle of the IL itself. Pervaporation (PV) is a highly selective and scalable membrane separation process for quantitatively recovering volatile solutes or solvents directly from non-volatile solvents that could prove more versatile for IL dehydration. RESULTS: We evaluated a commercially available PV system for IL dehydration and recycling as part of an integrated IL pretreatment process using 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) that has been proven to be very effective as a biomass pretreatment solvent. Separation factors as high as 1500 were observed. We demonstrate that >99.9 wt% [C2C1Im][OAc] can be recovered from aqueous solution (≤20 wt% IL) and recycled five times. A preliminary technoeconomic analysis validated the promising role of PV in improving overall biorefinery process economics, especially in the case where other IL recovery technologies might lead to significant losses. CONCLUSIONS: These findings establish the foundation for further development of PV as an effective method of recovering and recycling ILs using a commercially viable process technology.

20.
ACS Med Chem Lett ; 8(5): 498-503, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28523100

RESUMO

Tuning the bioavailability of lidocaine was explored by its incorporation into the ionic liquid lidocainium docusate ([Lid][Doc]) and the deep eutectic Lidocaine·Ibuprofen (Lid·Ibu) and comparing the transdermal absorption of these with the crystalline salt lidocainium chloride ([Lid]Cl). Each form of lidocaine was dissolved in a vehicle cream and topically applied to Sprague-Dawley rats. The concentrations of the active pharmaceutical ingredients (APIs) in blood plasma were monitored over time as an indication of systemic absorption. The concentration of lidocaine in plasma varied between applied API-based creams, with faster and higher systemic absorption of the hydrogen bonded deep eutectic Lid·Ibu than the absorption of the salts [Lid]Cl or [Lid][Doc]. Interestingly, a differential transdermal absorption was observed between lidocaine and ibuprofen when Lid·Ibu was applied, possibly indicating different interactions with the tissue components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...