Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587908

RESUMO

Regenerative medicine based on cell therapy has emerged as a promising approach for the treatment of various medical conditions. However, the success of cell therapy heavily relies on the development of suitable injectable hydrogels that can encapsulate cells and provide a conducive environment for their survival, proliferation, and tissue regeneration. Herein, we address the medical need for cyto- and biocompatible injectable hydrogels by reporting on the synthesis of a hydrogel-forming thermosensitive copolymer. The copolymer was synthesized by grafting poly(N-isopropylacrylamide-co-carboxymethyl acrylate) (PNIPAM-COOH) onto chitosan through amide coupling. This chemical modification resulted in the formation of hydrogels that exhibit a sol-gel transition with an onset at approximately 27 °C, making them ideal for use in injectable applications. The hydrogels supported the survival and proliferation of cells for several days, which is critical for cell encapsulation. Furthermore, the study evaluates the addition of collagen/chitosan hybrid microspheres to support the adhesion of mesenchymal stem cells within the hydrogels. Altogether, these results demonstrate the potential of the PNIPAM-chitosan thermogel for cell encapsulation and its possible applications in regenerative medicine.

2.
PLoS One ; 17(10): e0272097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36194565

RESUMO

While lactate shuttle theory states that glial cells metabolize glucose into lactate to shuttle it to neurons, how glial cells support axonal metabolism and function remains unclear. Lactate production is a common occurrence following anaerobic glycolysis in muscles. However, several other cell types, including some stem cells, activated macrophages and tumor cells, can produce lactate in presence of oxygen and cellular respiration, using Pyruvate Kinase 2 (PKM2) to divert pyruvate to lactate dehydrogenase. We show here that PKM2 is also upregulated in myelinating Schwann cells (mSC) of mature mouse sciatic nerve versus postnatal immature nerve. Deletion of this isoform in PLP-expressing cells in mice leads to a deficit of lactate in mSC and in peripheral nerves. While the structure of myelin sheath was preserved, mutant mice developed a peripheral neuropathy. Peripheral nerve axons of mutant mice failed to maintain lactate homeostasis upon activity, resulting in an impaired production of mitochondrial ATP. Action potential propagation was not altered but axonal mitochondria transport was slowed down, muscle axon terminals retracted and motor neurons displayed cellular stress. Additional reduction of lactate availability through dichloroacetate treatment, which diverts pyruvate to mitochondrial oxidative phosphorylation, further aggravated motor dysfunction in mutant mice. Thus, lactate production through PKM2 enzyme and aerobic glycolysis is essential in mSC for the long-term maintenance of peripheral nerve axon physiology and function.


Assuntos
Axônios , Piruvato Quinase , Trifosfato de Adenosina/metabolismo , Animais , Axônios/metabolismo , Glucose/metabolismo , Glicólise , Lactato Desidrogenases , Lactatos/metabolismo , Camundongos , Bainha de Mielina/metabolismo , Oxigênio/metabolismo , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Piruvatos/metabolismo , Células de Schwann/metabolismo , Nervo Isquiático/patologia
3.
Acta Biomater ; 153: 97-107, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36113724

RESUMO

Tissue engineering aims to restore or replace different types of biological tissues through the association of cells, biologic factors and biomaterials. Currently, stem cells arise as a major cell source for many therapeutic indications, and their association with 3D scaffolds allow increasing regenerative medicine efficiency. In this context, the use of RNA interference to enhance or control stem cell differentiation into the desired phenotype appears as a promising strategy. However, achieving high transfection efficiency of cells in a 3D structure requires the use of a vector allowing for the spatiotemporally controlled release of the genetic material from these scaffolds. In this study, we report a new siRNA nanovector, called solvent exchange lipoplexe formulation (SELF), which has a tunable size, is stable over time in cell culture conditions and possess a high efficiency to transfect primary human mesenchymal stromal cells (hMSC). We associated SELFs with porous 3D collagen microspheres and demonstrated that the loading capacity and release kinetics were different depending on the size of the associated SELF. Interestingly, these different release profiles resulted in differences in the transfection kinetics of hMSCs. This original and unique type of gene activated matrix, with adaptable release kinetics, could be of interest for long-term and/or sequential transfection profiles of stem cells in 3D culture. STATEMENT OF SIGNIFICANCE: This work combines the use of human mesenchymal stromal cell (hMSC) and gene therapy for tissue engineering. Here, a gene-activated matrix was elaborated with collagen microspheres supporting hMSCs and acting as a reservoir for transfection vectors. This injectable GAM allows for the local and sustained delivery of nucleic acids, hence long-lasting transfection of the supported cells. With the original synthesis protocol presented herein, the size of the nanocarriers can be easily adapted, resulting in different siRNA release profiles from the microspheres. Most interestingly, different siRNA release profiles gave rise to different cell transfection profiles as assessed by the downregulation of a target gene. This highlights the versatility of the system and its suitability for various pathophysiological needs in regenerative medicine.


Assuntos
Células-Tronco Mesenquimais , Humanos , RNA Interferente Pequeno/metabolismo , Engenharia Tecidual/métodos , Diferenciação Celular , Colágeno/metabolismo , Lipídeos
4.
J Med Chem ; 65(17): 11633-11647, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35984330

RESUMO

The voltage-dependent anion channel (VDAC), the most abundant protein on the outer mitochondrial membrane, is implicated in ATP, ion and metabolite exchange with cell compartments. In particular, the VDAC participates in cytoplasmic and mitochondrial Ca2+ homeostasis. Notably, the Ca2+ efflux out of Schwann cell mitochondria is involved in peripheral nerve demyelination that underlies most peripheral neuropathies. Hexokinase (HK) isoforms I and II, the main ligands of the VDAC, possess a hydrophobic N-terminal structured in α-helix (NHKI) that is necessary for the binding to the VDAC. To gain further insight into the molecular basis of HK binding to the VDAC, we developed and optimized peptides based on the NHKI sequence. These modifications lead to an increase of the peptide hydrophobicity and helical content that enhanced their ability to prevent peripheral nerve demyelination. Our results provide new insights into the molecular basis of VDAC/HK interaction that could lead to the development of therapeutic compounds for demyelinating peripheral neuropathies.


Assuntos
Doenças Desmielinizantes , Doenças do Sistema Nervoso Periférico , Sítios de Ligação , Hexoquinase , Humanos , Nervos Periféricos/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo
5.
Biomedicines ; 10(6)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35740468

RESUMO

A large number of peripheral neuropathies, among which are traumatic and diabetic peripheral neuropathies, result from the degeneration of the myelin sheath, a process called demyelination. Demyelination does not result from Schwann cell death but from Schwann cell dedifferentiation, which includes reprograming and several catabolic and anabolic events. Starting around 4 h after nerve injury, activation of MAPK/cJun pathways is the earliest characterized step of this dedifferentiation program. Here we show, using real-time in vivo imaging, that Schwann cell mitochondrial pH, motility and calcium content are altered as soon as one hour after nerve injury. Mitochondrial calcium release occurred through the VDAC outer membrane channel and mPTP inner membrane channel. This calcium influx in the cytoplasm induced Schwann-cell demyelination via MAPK/c-Jun activation. Blocking calcium release through VDAC silencing or VDAC inhibitor TRO19622 prevented demyelination. We found that the kinetics of mitochondrial calcium release upon nerve injury were altered in the Schwann cells of diabetic mice suggesting a permanent leak of mitochondrial calcium in the cytoplasm. TRO19622 treatment alleviated peripheral nerve defects and motor deficit in diabetic mice. Together, these data indicate that mitochondrial calcium homeostasis is instrumental in the Schwann cell demyelination program and that blocking VDAC constitutes a molecular basis for developing anti-demyelinating drugs for diabetic peripheral neuropathy.

6.
Nat Commun ; 12(1): 2356, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883545

RESUMO

Charcot-Marie-Tooth disease 1 A (CMT1A) results from a duplication of the PMP22 gene in Schwann cells and a deficit of myelination in peripheral nerves. Patients with CMT1A have reduced nerve conduction velocity, muscle wasting, hand and foot deformations and foot drop walking. Here, we evaluate the safety and efficacy of recombinant adeno-associated viral vector serotype 9 (AAV2/9) expressing GFP and shRNAs targeting Pmp22 mRNA in animal models of Charcot-Marie-Tooth disease 1 A. Intra-nerve delivery of AAV2/9 in the sciatic nerve allowed widespread transgene expression in resident myelinating Schwann cells in mice, rats and non-human primates. A bilateral treatment restore expression levels of PMP22 comparable to wild-type conditions, resulting in increased myelination and prevention of motor and sensory impairments over a twelve-months period in a rat model of CMT1A. We observed limited off-target transduction and immune response using the intra-nerve delivery route. A combination of previously characterized human skin biomarkers is able to discriminate between treated and untreated animals, indicating their potential use as part of outcome measures.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/terapia , Proteínas da Mielina/antagonistas & inibidores , Proteínas da Mielina/genética , Animais , Doença de Charcot-Marie-Tooth/patologia , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Inativação Gênica , Terapia Genética/métodos , Vetores Genéticos , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Ratos , Ratos Mutantes , Células de Schwann/metabolismo , Células de Schwann/patologia , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia
7.
J Colloid Interface Sci ; 580: 449-459, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32711196

RESUMO

Polymer vectors for gene therapy have been largely investigated as an alternative to viral vectors. In particular, double hydrophilic block copolymers (DHBCs) have shown potential in this domain, but to date studies mainly focus on non-degradable copolymers, which may be a restriction for further development. To overcome this limitation, we synthesized a DHBC (PEG43-b-PCL12(COOH)6.5) composed of a poly(ethylene glycol) (PEG) non-ionic and bioeliminable block and a degradable carboxylic acid-functionalized poly(ε-caprolactone) (PCL) block. The potential of this DHBC as an original vector for small interfering ribonucleic acids (siRNA) to formulate tripartite polyionic complex (PIC) micelles with poly(lysine) (PLL) was evaluated. We first studied the impact of the charge ratio (R) on the size and the zeta potential of the resulting micelles. With a charge ratio R = 1, one formulation with optimized physico-chemical properties showed the ability to complex 75% of siRNA. We showed a stability of the micelles at pH 7.4 and a disruption at pH 5, which allowed a pH-triggered siRNA release and proved the pH-stimuli responsive character of the tripartite micelles. In addition, the tripartite PIC micelles were shown to be non-cytotoxic below 40 µg/mL. The potential of these siRNA vectors was further evaluated in vitro: it was found that the tripartite PIC micelles allowed siRNA internalization to be 3 times higher than PLL polyplexes in murine mesenchymal stem cells, and were able to transfect human breast cancer cells. Overall, this set of data pre-validates the use of degradable DHBC as non-viral vectors for the encapsulation and the controlled release of siRNA, which may therefore constitute a sound alternative to non-degradable and/or cytotoxic polycationic vectors.


Assuntos
Micelas , Polímeros , Animais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Polietilenoglicóis , RNA Interferente Pequeno/genética
8.
Acta Neuropathol Commun ; 7(1): 86, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186069

RESUMO

Mitochondria are critical for the function and maintenance of myelinated axons notably through Adenosine triphosphate (ATP) production. A direct by-product of this ATP production is reactive oxygen species (ROS), which are highly deleterious for neurons. While ATP shortage and ROS levels increase are involved in several neurodegenerative diseases, it is still unclear whether the real-time dynamics of both ATP and ROS production in axonal mitochondria are altered by axonal or demyelinating neuropathies. To answer this question, we imaged and quantified mitochondrial ATP and hydrogen peroxide (H2O2) in resting or stimulated peripheral nerve myelinated axons in vivo, using genetically-encoded fluorescent probes, two-photon time-lapse and CARS imaging. We found that ATP and H2O2 productions are intrinsically higher in nodes of Ranvier even in resting conditions. Axonal firing increased both ATP and H2O2 productions but with different dynamics: ROS production peaked shortly and transiently after the stimulation while ATP production increased gradually for a longer period of time. In neuropathic MFN2R94Q mice, mimicking Charcot-Marie-Tooth 2A disease, defective mitochondria failed to upregulate ATP production following axonal activity. However, elevated H2O2 production was largely sustained. Finally, inducing demyelination with lysophosphatidylcholine resulted in a reduced level of ATP while H2O2 level soared. Taken together, our results suggest that ATP and ROS productions are decoupled under neuropathic conditions, which may compromise axonal function and integrity.


Assuntos
Trifosfato de Adenosina/metabolismo , Axônios/metabolismo , Mitocôndrias/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Fibras Nervosas Mielinizadas/metabolismo
9.
J Biophotonics ; 11(12): e201800186, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30091529

RESUMO

Myelin sheath produced by Schwann cells covers and nurtures axons to speed up nerve conduction in peripheral nerves. Demyelinating peripheral neuropathies result from the loss of this myelin sheath and so far, no treatment exists to prevent Schwann cell demyelination. One major hurdle to design a therapy for demyelination is the lack of reliable measures to evaluate the outcome of the treatment on peripheral myelin in patients but also in living animal models. Non-linear microscopy techniques which include second harmonic generation (SHG), third harmonic generation (THG) and coherent anti-stokes Raman scattering (CARS) were used to image myelin ex vivo and in vivo in the sciatic nerve of healthy and demyelinating mice and rats. SHG did not label myelin and THG required too much light power to be compatible with live imaging. CARS is the most reliable of these techniques for in vivo imaging and it allows for the analysis and quantification of myelin defects in a rat model of CMT1A disease. This microscopic technique therefore constitutes a promising, reliable and robust readout tool in the development of new treatments for demyelinating peripheral neuropathies.


Assuntos
Doença de Charcot-Marie-Tooth/diagnóstico por imagem , Doença de Charcot-Marie-Tooth/fisiopatologia , Microscopia , Bainha de Mielina/fisiologia , Animais , Modelos Animais de Doenças , Camundongos , Ratos , Nervo Isquiático/diagnóstico por imagem
11.
Nat Commun ; 7: 12186, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27435623

RESUMO

Fast nerve conduction relies on successive myelin segments that electrically isolate axons. Segment geometry-diameter and length-is critical for the optimization of nerve conduction and the molecular mechanisms allowing this optimized geometry are partially known. We show here that peripheral myelin elongation is dynamically regulated by stimulation of YAP (Yes-associated protein) transcription cofactor activity during axonal elongation and limited by inhibition of YAP activity via the Hippo pathway. YAP promotes myelin and non-myelin genes transcription while the polarity protein Crb3, localized at the tips of the myelin sheath, activates the Hippo pathway to temper YAP activity, therefore allowing for optimal myelin growth. Dystrophic Dy(2j/2j) mice mimicking human peripheral neuropathy with reduced internodal lengths have decreased nuclear YAP which, when corrected, leads to longer internodes. These data show a novel mechanism controlling myelin growth and nerve conduction, and provide a molecular ground for disease with short myelin segments.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Axônios/metabolismo , Proteínas de Membrana/metabolismo , Bainha de Mielina/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Axônios/ultraestrutura , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Células HEK293 , Via de Sinalização Hippo , Humanos , Glicoproteínas de Membrana , Camundongos , Fenótipo , Fosforilação , Ratos , Células de Schwann/metabolismo , Transcrição Gênica , Proteínas de Sinalização YAP
14.
J Clin Invest ; 126(3): 1023-38, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26878172

RESUMO

Schwann cells produce myelin sheath around peripheral nerve axons. Myelination is critical for rapid propagation of action potentials, as illustrated by the large number of acquired and hereditary peripheral neuropathies, such as diabetic neuropathy or Charcot-Marie-Tooth diseases, that are commonly associated with a process of demyelination. However, the early molecular events that trigger the demyelination program in these diseases remain unknown. Here, we used virally delivered fluorescent probes and in vivo time-lapse imaging in a mouse model of demyelination to investigate the underlying mechanisms of the demyelination process. We demonstrated that mitochondrial calcium released by voltage-dependent anion channel 1 (VDAC1) after sciatic nerve injury triggers Schwann cell demyelination via ERK1/2, p38, JNK, and c-JUN activation. In diabetic mice, VDAC1 activity was altered, resulting in a mitochondrial calcium leak in Schwann cell cytoplasm, thereby priming the cell for demyelination. Moreover, reduction of mitochondrial calcium release, either by shRNA-mediated VDAC1 silencing or pharmacological inhibition, prevented demyelination, leading to nerve conduction and neuromuscular performance recovery in rodent models of diabetic neuropathy and Charcot-Marie-Tooth diseases. Therefore, this study identifies mitochondria as the early key factor in the molecular mechanism of peripheral demyelination and opens a potential opportunity for the treatment of demyelinating peripheral neuropathies.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio , Colestenonas/farmacologia , Doenças Desmielinizantes/tratamento farmacológico , Mitocôndrias/metabolismo , Células de Schwann/fisiologia , Animais , Cálcio/metabolismo , Linhagem Celular , Doença de Charcot-Marie-Tooth/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Obesos , Camundongos SCID , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/patologia , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/patologia , Ratos , Células de Schwann/efeitos dos fármacos , Canal de Ânion 1 Dependente de Voltagem/antagonistas & inibidores , Canal de Ânion 1 Dependente de Voltagem/metabolismo
15.
Mitochondrion ; 23: 32-41, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26031781

RESUMO

The myelin sheath that covers a large amount of neurons is critical for their homeostasis, and myelinating glia mitochondria have recently been shown to be essential for neuron survival. However morphological and physiological properties of these organelles remain elusive. Here we report a method to analyze mitochondrial dynamics and morphology in myelinating Schwann cells of living mice using viral transduction and time-lapse multiphoton microscopy. We describe the distribution, shape, size and dynamics of mitochondria in live cells. We also report mitochondrial alterations in Opa1(delTTAG) mutant mice cells at presymptomatic stages, suggesting that mitochondrial defects in myelin contribute to OPA1 related neuropathy and represent a biomarker for the disease.


Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Bainha de Mielina/fisiologia , Bainha de Mielina/ultraestrutura , Células de Schwann/fisiologia , Células de Schwann/ultraestrutura , Animais , GTP Fosfo-Hidrolases/deficiência , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...