Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; 4(5): 100607, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37098653

RESUMO

Quantitative disease resistance (QDR) remains the most prevalent form of plant resistance in crop fields and wild habitats. Genome-wide association studies (GWAS) have proved to be successful in deciphering the quantitative genetic basis of complex traits such as QDR. To unravel the genetics of QDR to the devastating worldwide bacterial pathogen Ralstonia solanacearum, we performed a GWAS by challenging a highly polymorphic local mapping population of Arabidopsis thaliana with four R. solanacearum type III effector (T3E) mutants, identified as key pathogenicity determinants after a first screen on an A. thaliana core collection of 25 accessions. Although most quantitative trait loci (QTLs) were highly specific to the identity of the T3E mutant (ripAC, ripAG, ripAQ, and ripU), we finely mapped a common QTL located on a cluster of nucleotide-binding domain and leucine-rich repeat (NLR) genes that exhibited structural variation. We functionally validated one of these NLRs as a susceptibility factor in response to R. solanacearum, named it Bacterial Wilt Susceptibility 1 (BWS1), and cloned two alleles that conferred contrasting levels of QDR. Further characterization indicated that expression of BWS1 leads to suppression of immunity triggered by different R. solanacearum effectors. In addition, we showed a direct interaction between BWS1 and RipAC T3E, and BWS1 and SUPPRESSOR OF G2 ALLELE OF skp1 (SGT1b), the latter interaction being suppressed by RipAC. Together, our results highlight a putative role for BWS1 as a quantitative susceptibility factor directly targeted by the T3E RipAC, mediating negative regulation of the SGT1-dependent immune response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Estudo de Associação Genômica Ampla , Resistência à Doença/genética , Virulência/genética , Glucosiltransferases , Proteínas de Arabidopsis/genética
2.
Trends Plant Sci ; 28(4): 471-485, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36522258

RESUMO

Harnessing natural genetic variation is an established alternative to artificial genetic variation for investigating the molecular dialog between partners in plant pathosystems. Herein, we review the successes of genome-wide association studies (GWAS) in both plants and pathogens. While GWAS in plants confirmed that the genetic architecture of disease resistance is polygenic, dynamic during the infection kinetics, and dependent on the environment, GWAS shortened the time of identification of quantitative trait loci (QTLs) and revealed both complex epistatic networks and a genetic architecture dependent upon the geographical scale. A similar picture emerges from the few GWAS in pathogens. In addition, the ever-increasing number of functionally validated QTLs has revealed new molecular plant defense mechanisms and pathogenicity determinants. Finally, we propose recommendations to better decode the disease triangle.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Fenótipo , Doenças das Plantas/genética
3.
Trends Plant Sci ; 28(1): 31-42, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36114125

RESUMO

Interactions among plants have been long recognized as a major force driving plant community dynamics and crop yield. Surprisingly, our knowledge of the ecological genetics associated with variation of plant-plant interactions remains limited. In this opinion article by scientists from complementary disciplines, the international PLANTCOM network identified four timely questions to foster a better understanding of the mechanisms mediating plant assemblages. We propose that by identifying the key relationships among phenotypic traits involved in plant-plant interactions and the underlying adaptive genetic and molecular pathways, while considering environmental fluctuations at diverse spatial and time scales, we can improve predictions of genotype-by-genotype-by-environment interactions and modeling of productive and stable plant assemblages in wild habitats and crop fields.


Assuntos
Ecossistema , Plantas , Genótipo , Fenótipo , Plantas/genética
5.
Plant J ; 109(2): 447-470, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34399442

RESUMO

The plant immune system has been explored essentially through the study of qualitative resistance, a simple form of immunity, and from a reductionist point of view. The recent identification of genes conferring quantitative disease resistance revealed a large array of functions, suggesting more complex mechanisms. In addition, thanks to the advent of high-throughput analyses and system approaches, our view of the immune system has become more integrative, revealing that plant immunity should rather be seen as a distributed and highly connected molecular network including diverse functions to optimize expression of plant defenses to pathogens. Here, we review the recent progress made to understand the network complexity of regulatory pathways leading to plant immunity, from pathogen perception, through signaling pathways and finally to immune responses. We also analyze the topological organization of these networks and their emergent properties, crucial to predict novel immune functions and test them experimentally. Finally, we report how these networks might be regulated by environmental clues. Although system approaches remain extremely scarce in this area of research, a growing body of evidence indicates that the plant response to combined biotic and abiotic stresses cannot be inferred from responses to individual stresses. A view of possible research avenues in this nascent biology domain is finally proposed.


Assuntos
Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Plantas/imunologia , Transdução de Sinais , Agricultura , Mudança Climática , Resistência à Doença , Meio Ambiente , Plantas/genética , Estresse Fisiológico
6.
Mol Plant Pathol ; 23(2): 159-174, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34837293

RESUMO

Xanthomonas campestris pv. campestris (Xcc) is a seed-transmitted vascular pathogen causing black rot disease on cultivated and wild Brassicaceae. Xcc enters the plant tissues preferentially via hydathodes, which are organs localized at leaf margins. To decipher both physiological and virulence strategies deployed by Xcc during early stages of infection, the transcriptomic profile of Xcc was analysed 3 days after entry into cauliflower hydathodes. Despite the absence of visible plant tissue alterations and despite a biotrophic lifestyle, 18% of Xcc genes were differentially expressed, including a striking repression of chemotaxis and motility functions. The Xcc full repertoire of virulence factors had not yet been activated but the expression of the HrpG regulon composed of 95 genes, including genes coding for the type III secretion machinery important for suppression of plant immunity, was induced. The expression of genes involved in metabolic adaptations such as catabolism of plant compounds, transport functions, sulphur and phosphate metabolism was upregulated while limited stress responses were observed 3 days postinfection. We confirmed experimentally that high-affinity phosphate transport is needed for bacterial fitness inside hydathodes. This analysis provides information about the nutritional and stress status of bacteria during the early biotrophic infection stages and helps to decipher the adaptive strategy of Xcc to the hydathode environment.


Assuntos
Brassica , Xanthomonas campestris , Xanthomonas , Adaptação Fisiológica/genética , Proteínas de Bactérias/metabolismo , Brassica/genética , Regulação Bacteriana da Expressão Gênica , Doenças das Plantas/genética , Transcriptoma/genética , Virulência/genética , Xanthomonas/metabolismo , Xanthomonas campestris/genética
7.
Mol Plant Pathol ; 23(3): 321-338, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34939305

RESUMO

Ralstonia solanacearum gram-negative phytopathogenic bacterium exerts its virulence through a type III secretion system (T3SS) that translocates type III effectors (T3Es) directly into the host cells. T3E secretion is finely controlled at the posttranslational level by helper proteins, T3SS control proteins, and type III chaperones. The HpaP protein, one of the type III secretion substrate specificity switch (T3S4) proteins, was previously highlighted as a virulence factor on Arabidopsis thaliana Col-0 accession. In this study, we set up a genome-wide association analysis to explore the natural diversity of response to the hpaP mutant of two A. thaliana mapping populations: a worldwide collection and a local population. Quantitative genetic variation revealed different genetic architectures in both mapping populations, with a global delayed response to the hpaP mutant compared to the GMI1000 wild-type strain. We have identified several quantitative trait loci (QTLs) associated with the hpaP mutant inoculation. The genes underlying these QTLs are involved in different and specific biological processes, some of which were demonstrated important for R. solanacearum virulence. We focused our study on four candidate genes, RKL1, IRE3, RACK1B, and PEX3, identified using the worldwide collection, and validated three of them as susceptibility factors. Our findings demonstrate that the study of the natural diversity of plant response to a R. solanacearum mutant in a key regulator of virulence is an original and powerful strategy to identify genes directly or indirectly targeted by the pathogen.


Assuntos
Arabidopsis , Ralstonia solanacearum , Arabidopsis/microbiologia , Proteínas de Bactérias/metabolismo , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Virulência/genética
8.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638807

RESUMO

Calcium signals are crucial for the activation and coordination of signaling cascades leading to the establishment of plant defense mechanisms. Here, we studied the contribution of CML8, an Arabidopsis calmodulin-like protein in response to Ralstonia solanacearum and to pathogens with different lifestyles, such as Xanthomonas campestris pv. campestris and Phytophtora capsici. We used pathogenic infection assays, gene expression, RNA-seq approaches, and comparative analysis of public data on CML8 knockdown and overexpressing Arabidopsis lines to demonstrate that CML8 contributes to defense mechanisms against pathogenic bacteria and oomycetes. CML8 gene expression is finely regulated at the root level and manipulated during infection with Ralstonia, and CML8 overexpression confers better plant tolerance. To understand the processes controlled by CML8, genes differentially expressed at the root level in the first hours of infection have been identified. Overexpression of CML8 also confers better tolerance against Xanthomonas and Phytophtora, and most of the genes differentially expressed in response to Ralstonia are differentially expressed in these different pathosystems. Collectively, CML8 acts as a positive regulator against Ralstonia solanaceraum and against other vascular or root pathogens, suggesting that CML8 is a multifunctional protein that regulates common downstream processes involved in the defense response of plants to several pathogens.


Assuntos
Arabidopsis/metabolismo , Cálcio/metabolismo , Resistência à Doença , Doenças das Plantas , Transdução de Sinais , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Phytophthora , Ralstonia solanacearum , Xanthomonas campestris
9.
New Phytol ; 229(2): 712-734, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32981118

RESUMO

In their natural environment, plants are exposed to biotic or abiotic stresses that occur sequentially or simultaneously. Plant responses to these stresses have been studied widely and have been well characterised in simplified systems involving single plant species facing individual stress. Temperature elevation is a major abiotic driver of climate change and scenarios have predicted an increase in the number and severity of epidemics. In this context, here we review the available data on the effect of heat stress on plant-pathogen interactions. Considering 45 studies performed on model or crop species, we discuss the possible implications of the optimum growth temperature of plant hosts and pathogens, mode of stress application and temperature variation on resistance modulations. Alarmingly, most identified resistances are altered under temperature elevation, regardless of the plant and pathogen species. Therefore, we have listed current knowledge on heat-dependent plant immune mechanisms and pathogen thermosensory processes, mainly studied in animals and human pathogens, that could help to understand the outcome of plant-pathogen interactions under elevated temperatures. Based on a general overview of the mechanisms involved in plant responses to pathogens, and integrating multiple interactions with the biotic environment, we provide recommendations to optimise plant disease resistance under heat stress and to identify thermotolerant resistance mechanisms.


Assuntos
Termotolerância , Animais , Mudança Climática , Resistência à Doença , Meio Ambiente , Regulação da Expressão Gênica de Plantas , Humanos , Doenças das Plantas , Estresse Fisiológico
10.
Mol Plant Pathol ; 21(11): 1405-1420, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32914940

RESUMO

Plant immunity is often negatively impacted by heat stress. However, the underlying molecular mechanisms remain poorly characterized. Based on a genome-wide association mapping approach, this study aims to identify in Arabidopsis thaliana the genetic bases of robust resistance mechanisms to the devastating pathogen Ralstonia solanacearum under heat stress. A local mapping population was phenotyped against the R. solanacearum GMI1000 strain at 27 and 30 °C. To obtain a precise description of the genetic architecture underlying natural variation of quantitative disease resistance (QDR), we applied a genome-wide local score analysis. Alongside an extensive genetic variation found in this local population at both temperatures, we observed a playful dynamics of quantitative trait loci along the infection stages. In addition, a complex genetic network of interacting loci could be detected at 30 °C. As a first step to investigate the underlying molecular mechanisms, the atypical meiotic cyclin SOLO DANCERS gene was validated by a reverse genetic approach as involved in QDR to R. solanacearum at 30 °C. In the context of climate change, the complex genetic architecture underlying QDR under heat stress in a local mapping population revealed candidate genes with diverse molecular functions.


Assuntos
Arabidopsis/genética , Resistência à Doença/genética , Epistasia Genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Ralstonia solanacearum/fisiologia , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Mapeamento Cromossômico , Redes Reguladoras de Genes , Variação Genética , Estudo de Associação Genômica Ampla , Resposta ao Choque Térmico , Fenótipo
11.
Plants (Basel) ; 9(2)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098170

RESUMO

C to U editing is one of the post-transcriptional steps which are required for the proper expression of chloroplast and mitochondrial genes in plants. It depends on several proteins acting together which include the PLS-class pentatricopeptide repeat proteins (PPR). DYW2 was recently shown to be required for the editing of many sites in both organelles. In particular almost all the sites associated with the E+ subfamily of PPR proteins are depending on DYW2, suggesting that DYW2 is required for the function of E+-type PPR proteins. Here we strengthened this link by identifying 16 major editing sites controlled by 3 PPR proteins: OTP90, a DYW-type PPR and PGN and MEF37, 2 E+-type PPR proteins. A re-analysis of the DYW2 editotype showed that the 49 sites known to be associated with the 18 characterized E+-type PPR proteins all depend on DYW2. Considering only the 288 DYW2-dependent editing sites as potential E+-type PPR sites, instead of the 795 known editing sites, improves the performances of binding predictions systems based on the PPR code for E+-type PPR proteins. However, it does not compensate for poor binding predictions.

12.
Plant J ; 101(3): 731-741, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31625644

RESUMO

Recent advances in the study of plant developmental and physiological responses have benefited from tissue-specific approaches, revealing the role of some cell types in these processes. Such approaches have relied on the inactivation of target cells using either toxic compounds or deleterious genes; however, both tissue-specific and truly inducible tools are lacking in order to precisely target a developmental window or specific growth response. We engineered the yeast fluorocytosine deaminase (FCY1) gene by creating a fusion with the bacterial uracil phosphoribosyl transferase (UPP) gene. The recombinant protein converts the precursor 5-fluorocytosine (5-FC) into 5-fluorouracyl, a drug used in the treatment of a range of cancers, which triggers DNA and RNA damage. We expressed the FCY-UPP gene construct in specific cell types using enhancer trap lines and promoters, demonstrating that this marker acts in a cell-autonomous manner. We also showed that it can inactivate slow developmental processes like lateral root formation by targeting pericycle cells. It also revealed a role for the lateral root cap and the epidermis in controlling root growth, a faster response. The 5-FC precursor acts systemically, as demonstrated by its ability to inhibit stomatal movements when supplied to the roots in combination with a guard cell-specific promoter. Finally, we demonstrate that the tissular inactivation is reversible, and can therefore be used to synchronize plant responses or to determine cell type-specific functions during different developmental stages. This tool will greatly enhance our capacity to understand the respective role of each cell type in plant physiology and development.


Assuntos
Arabidopsis/genética , Citosina Desaminase/genética , Especificidade de Órgãos , Pentosiltransferases/genética , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas Recombinantes
13.
Annu Rev Phytopathol ; 57: 91-116, 2019 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-31100996

RESUMO

Hydathodes are organs found on aerial parts of a wide range of plant species that provide almost direct access for several pathogenic microbes to the plant vascular system. Hydathodes are better known as the site of guttation, which is the release of droplets of plant apoplastic fluid to the outer leaf surface. Because these organs are only described through sporadic allusions in the literature, this review aims to provide a comprehensive view of hydathode development, physiology, and immunity by compiling a historic and contemporary bibliography. In particular, we refine the definition of hydathodes.We illustrate their important roles in the maintenance of plant osmotic balance, nutrient retrieval, and exclusion of deleterious chemicals from the xylem sap. Finally, we present our current understanding of the infection of hydathodes by adapted vascular pathogens and the associated plant immune responses.


Assuntos
Folhas de Planta , Xilema
14.
J Plant Physiol ; 238: 1-11, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31121522

RESUMO

Treatment of Arabidopsis thaliana seedlings with the PSII-inhibiting herbicide atrazine results in xenobiotic and oxidative stress, developmental arrest, induction of senescence and cell death processes. In contrast, exogenous sucrose supply confers a high level of atrazine stress tolerance, in relation with genome-wide modifications of transcript levels and regulation of genes involved in detoxification, defense and repair. However, the regulation mechanisms related to exogenous sucrose, involved in this sucrose-induced tolerance, are largely unknown. Characterization of these mechanisms was carried out through a combination of transcriptomic, metabolic, functional and mutant analysis under different conditions of atrazine exposure. Exogenous sucrose was found to differentially regulate genes involved in polyamine synthesis. ARGININE DECARBOXYLASE ADC1 and ADC2 paralogues, which encode the rate-limiting enzyme (EC 4.1.1.19) of the first step of polyamine biosynthesis, were strongly upregulated by sucrose treatment in the presence of atrazine. Such regulation occurred concomitantly with significant changes of major polyamines (putrescine, spermidine, spermine). Physiological characterization of a mutant affected in ADC activity and exogenous treatments with sucrose, putrescine, spermidine and spermine further showed that modification of polyamine synthesis and of polyamine levels could play adaptive roles in response to atrazine stress, and that putrescine and spermine had antagonistic effects, especially in the presence of sucrose. This interplay between sucrose, putrescine and spermine is discussed in relation with survival and anti-death mechanisms in the context of chemical stress exposure.


Assuntos
Arabidopsis/efeitos dos fármacos , Atrazina/farmacologia , Herbicidas/farmacologia , Putrescina/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Sacarose/farmacologia , Arabidopsis/metabolismo , Morte Celular/efeitos dos fármacos , Resistência a Herbicidas , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Plântula/efeitos dos fármacos , Plântula/metabolismo , Transcriptoma/efeitos dos fármacos
15.
Methods Mol Biol ; 1734: 223-239, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29288458

RESUMO

In this chapter, we describe different methods for phenotyping strains or mutants of the bacterial wilt agent, Ralstonia solanacearum, on four different host plants: Arabidopsis thaliana, tomato (Solanum lycopersicum), tobacco (Nicotiana benthamiana), or Medicago truncatula. Methods for preparation of high volume or low volume inocula are first described. Then, we describe the procedures for inoculation of plants by soil drenching, stem injection or leaf infiltration, and scoring of the wilting symptoms development. Two methods for measurement of bacterial multiplication in planta are also proposed: (1) counting the bacterial colonies upon serial dilution plating and (2) determining the bacterial concentration using a qPCR approach. In this chapter, we also describe a competitive index assay to compare the fitness of two strains coinoculated in the same plant. Lastly, specific protocols describe in vitro and hydroponic inoculation procedures to follow disease development and bacterial multiplication in both the roots and aerial parts of the plant.


Assuntos
Fenótipo , Doenças das Plantas/microbiologia , Ralstonia solanacearum/fisiologia , Solanum lycopersicum/microbiologia , Medicago truncatula/microbiologia , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia , Nicotiana/microbiologia
16.
Front Plant Sci ; 8: 1387, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878784

RESUMO

In the context of climate warming, plants will be facing an increased risk of epidemics as well as the emergence of new highly aggressive pathogen species. Although a permanent increase of temperature strongly affects plant immunity, the underlying molecular mechanisms involved are still poorly characterized. In this study, we aimed to uncover the genetic bases of resistance mechanisms that are efficient at elevated temperature to the Ralstonia solanacearum species complex (RSSC), one of the most harmful phytobacteria causing bacterial wilt. To start the identification of quantitative trait loci (QTLs) associated with natural variation of response to R. solanacearum, we adopted a genome wide association (GWA) mapping approach using 176 worldwide natural accessions of Arabidopsis thaliana inoculated with the R. solanacearum GMI1000 strain. Following two different procedures of root-inoculation (root apparatus cut vs. uncut), plants were grown either at 27 or 30°C, with the latter temperature mimicking a permanent increase in temperature. At 27°C, the RPS4/RRS1-R locus was the main QTL of resistance detected regardless of the method of inoculation used. This highlights the power of GWA mapping to identify functionally important loci for resistance to the GMI1000 strain. At 30°C, although most of the accessions developed wilting symptoms, we identified several QTLs that were specific to the inoculation method used. We focused on a QTL region associated with response to the GMI1000 strain in the early stages of infection and, by adopting a reverse genetic approach, we functionally validated the involvement of a strictosidine synthase-like 4 (SSL4) protein that shares structural similarities with animal proteins known to play a role in animal immunity.

17.
Proc Natl Acad Sci U S A ; 114(33): 8877-8882, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760958

RESUMO

RNA editing is converting hundreds of cytosines into uridines during organelle gene expression of land plants. The pentatricopeptide repeat (PPR) proteins are at the core of this posttranscriptional RNA modification. Even if a PPR protein defines the editing site, a DYW domain of the same or another PPR protein is believed to catalyze the deamination. To give insight into the organelle RNA editosome, we performed tandem affinity purification of the plastidial CHLOROPLAST BIOGENESIS 19 (CLB19) PPR editing factor. Two PPR proteins, dually targeted to mitochondria and chloroplasts, were identified as potential partners of CLB19. These two proteins, a P-type PPR and a member of a small PPR-DYW subfamily, were shown to interact in yeast. Insertional mutations resulted in embryo lethality that could be rescued by embryo-specific complementation. A transcriptome analysis of these complemented plants showed major editing defects in both organelles with a very high PPR type specificity, indicating that the two proteins are core members of E+-type PPR editosomes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Mitocôndrias/metabolismo , Edição de RNA/fisiologia , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Mitocôndrias/genética , Proteínas de Ligação a RNA/genética
18.
Plant Physiol ; 174(2): 700-716, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28184011

RESUMO

Hydathodes are water pores found on leaves of a wide range of vascular plants and are the sites of guttation. We report here on the detailed anatomy of cauliflower (Brassicaoleracea) and Arabidopsis (Arabidopsis thaliana) hydathodes. Hydathode surface presents pores resembling stomata giving access to large cavities. Beneath, the epithem is composed of a lacunar and highly vascularized parenchyma offering a direct connection between leaf surface and xylem vessels. Arabidopsis hydathode pores were responsive to ABA and light similar to stomata. The flg22 flagellin peptide, a well-characterized elicitor of plant basal immunity, did not induce closure of hydathode pores in contrast to stomata. Because hydathodes are natural infection routes for several pathogens, we investigated hydathode infection by the adapted vascular phytopathogenic bacterium Xanthomonas campestris pv campestris (Xcc), the causal agent of black rot disease of Brassicaceae. Microscopic observations of hydathodes six days postinoculation indicated a digestion of the epithem cells and a high bacterial multiplication. Postinvasive immunity was shown to limit pathogen growth in the epithem and is actively suppressed by the type III secretion system and its effector proteins. Altogether, these results give a detailed anatomic description of Brassicaceae hydathodes and highlight the efficient use of this tissue as an initial niche for subsequent vascular systemic dissemination of Xcc in distant plant tissues.


Assuntos
Brassica/anatomia & histologia , Brassica/imunologia , Doenças das Plantas/imunologia , Xanthomonas campestris/patogenicidade , Ácido Abscísico/farmacologia , Arabidopsis/anatomia & histologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/imunologia , Arabidopsis/microbiologia , Brassica/microbiologia , Interações Hospedeiro-Patógeno , Folhas de Planta/microbiologia , Estômatos de Plantas/anatomia & histologia , Plantas Geneticamente Modificadas , Xanthomonas campestris/genética
19.
Development ; 144(7): 1187-1200, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28174250

RESUMO

To understand how the identity of an organ can be switched, we studied the transformation of lateral root primordia (LRP) into shoot meristems in Arabidopsis root segments. In this system, the cytokinin-induced conversion does not involve the formation of callus-like structures. Detailed analysis showed that the conversion sequence starts with a mitotic pause and is concomitant with the differential expression of regulators of root and shoot development. The conversion requires the presence of apical stem cells, and only LRP at stages VI or VII can be switched. It is engaged as soon as cell divisions resume because their position and orientation differ in the converting organ compared with the undisturbed emerging LRP. By alternating auxin and cytokinin treatments, we showed that the root and shoot organogenetic programs are remarkably plastic, as the status of the same plant stem cell niche can be reversed repeatedly within a set developmental window. Thus, the networks at play in the meristem of a root can morph in the span of a couple of cell division cycles into those of a shoot, and back, through transdifferentiation.


Assuntos
Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Meristema/citologia , Nicho de Células-Tronco , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Divisão Celular/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Citocininas/farmacologia , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Meristema/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Nicho de Células-Tronco/efeitos dos fármacos , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos
20.
Plant Physiol ; 173(1): 434-455, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852950

RESUMO

Plant mutants for genes encoding subunits of mitochondrial complex I (CI; NADH:ubiquinone oxidoreductase), the first enzyme of the respiratory chain, display various phenotypes depending on growth conditions. Here, we examined the impact of photoperiod, a major environmental factor controlling plant development, on two Arabidopsis (Arabidopsis thaliana) CI mutants: a new insertion mutant interrupted in both ndufs8.1 and ndufs8.2 genes encoding the NDUFS8 subunit and the previously characterized ndufs4 CI mutant. In the long day (LD) condition, both ndufs8.1 and ndufs8.2 single mutants were indistinguishable from Columbia-0 at phenotypic and biochemical levels, whereas the ndufs8.1 ndufs8.2 double mutant was devoid of detectable holo-CI assembly/activity, showed higher alternative oxidase content/activity, and displayed a growth retardation phenotype similar to that of the ndufs4 mutant. Although growth was more affected in ndufs4 than in ndufs8.1 ndufs8.2 under the short day (SD) condition, both mutants displayed a similar impairment of growth acceleration after transfer to LD compared with the wild type. Untargeted and targeted metabolomics showed that overall metabolism was less responsive to the SD-to-LD transition in mutants than in the wild type. The typical LD acclimation of carbon and nitrogen assimilation as well as redox-related parameters was not observed in ndufs8.1 ndufs8 Similarly, NAD(H) content, which was higher in the SD condition in both mutants than in Columbia-0, did not adjust under LD We propose that altered redox homeostasis and NAD(H) content/redox state control the phenotype of CI mutants and photoperiod acclimation in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Complexo I de Transporte de Elétrons/genética , Fotoperíodo , Antioxidantes/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Mutação , Nitrogênio/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...