Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sleep ; 47(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38156524

RESUMO

STUDY OBJECTIVES: The body-first Parkinson's disease (PD) hypothesis suggests initial gut Lewy body pathology initially propagates to the pons before reaching the substantia nigra, and subsequently progresses to the diencephalic and cortical levels, a disease course presumed to likely occur in PD with rapid eye movement sleep behavior disorder (RBD). We aimed to explore the potential association between colonic phosphorylated alpha-synuclein histopathology (PASH) and diencephalic or cortical dysfunction evidenced by non-rapid eye movement (NREM) sleep and wakefulness polysomnographic markers. METHODS: In a study involving 43 patients with PD who underwent clinical examination, rectosigmoidoscopy, and polysomnography, we detected PASH on colonic biopsies using whole-mount immunostaining. We performed a visual semi-quantitative analysis of NREM sleep and wake electroencephalography (EEG), confirmed it with automated quantification of spindle and slow wave features of NREM sleep, and the wake dominant frequency, and then determined probable Arizona PD stage classifications based on sleep and wake EEG features. RESULTS: The visual analysis aligned with the automated quantified spindle characteristics and the wake dominant frequency. Altered NREM sleep and wake parameters correlated with markers of PD severity, colonic PASH, and RBD diagnosis. Colonic PASH frequency also increased in parallel to probable Arizona PD stage classifications. CONCLUSIONS: Colonic PASH is strongly associated with widespread brain sleep and wake dysfunction, suggesting an extensive diffusion of the pathologic process in PD. Visual and automated analyses of polysomnography signals provide useful markers to gauge covert brain dysfunction in PD. CLINICAL TRIAL: Name: SYNAPark, URL: https://clinicaltrials.gov/study/NCT01748409, registration: NCT01748409.


Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , Humanos , Sono , Encéfalo , Polissonografia
3.
Sleep ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37943833

RESUMO

STUDY OBJECTIVES: Daytime napping is frequently reported among the older population and has attracted increasing attention due to its association with multiple health conditions. Here, we tested whether napping in the aged is associated with altered circadian regulation of sleep, sleepiness and vigilance performance. METHODS: Sixty healthy older individuals (mean age: 69y., 39 women) were recruited with respect to their napping habits (30 nappers, 30 non-nappers). All participants underwent an in-lab 40-h multiple nap protocol (10 cycles of 80 mins of sleep opportunity alternating with 160 mins of wakefulness), preceded and followed by a baseline and recovery sleep period. Saliva samples for melatonin assessment, sleepiness and vigilance performance were collected during wakefulness and electrophysiological data were recorded to derive sleep parameters during scheduled sleep opportunities. RESULTS: The circadian amplitude of melatonin secretion was reduced in nappers, compared to non-nappers. Furthermore, nappers were characterized by higher sleep efficiencies and REM sleep proportion during day- compared to night-time naps. The nap group also presented altered modulation in sleepiness and vigilance performance at specific circadian phases. DISCUSSION: Our data indicate that napping is associated with an altered circadian sleep-wake propensity rhythm and thereby contribute to the understanding of the biological correlates underlying napping and/or sleep-wake cycle fragmentation during healthy aging. Altered circadian sleep-wake promotion can lead to a less distinct allocation of sleep into night-time and/or a reduced wakefulness drive during the day, thereby potentially triggering the need to sleep at adverse circadian phase.

4.
Sci Rep ; 13(1): 20873, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012207

RESUMO

The regional integrity of brain subcortical structures has been implicated in sleep-wake regulation, however, their associations with sleep parameters remain largely unexplored. Here, we assessed association between quantitative Magnetic Resonance Imaging (qMRI)-derived marker of the myelin content of the brainstem and the variability in the sleep electrophysiology in a large sample of 18-to-31 years healthy young men (N = 321; ~ 22 years). Separate Generalized Additive Model for Location, Scale and Shape (GAMLSS) revealed that sleep onset latency and slow wave energy were significantly associated with MTsat estimates in the brainstem (pcorrected ≤ 0.03), with overall higher MTsat value associated with values reflecting better sleep quality. The association changed with age, however (MTsat-by-age interaction-pcorrected ≤ 0.03), with higher MTsat value linked to better values in the two sleep metrics in the younger individuals of our sample aged ~ 18 to 20 years. Similar associations were detected across different parts of the brainstem (pcorrected ≤ 0.03), suggesting that the overall maturation and integrity of the brainstem was associated with both sleep metrics. Our results suggest that myelination of the brainstem nuclei essential to regulation of sleep is associated with inter-individual differences in sleep characteristics during early adulthood. They may have implications for sleep disorders or neurological diseases related to myelin.


Assuntos
Tronco Encefálico , Bainha de Mielina , Masculino , Humanos , Adulto , Idoso , Tronco Encefálico/diagnóstico por imagem , Sono/fisiologia , Encéfalo/fisiologia , Envelhecimento , Imageamento por Ressonância Magnética/métodos
5.
Commun Biol ; 6(1): 1213, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030756

RESUMO

Fluctuations of consciousness and their rhythmicities have been rarely studied in patients with a disorder of consciousness after acute brain injuries. 24-h assessment of brain (EEG), behaviour (eye-opening), and circadian (clock-controlled hormones secretion from urine) functions was performed in acute brain-injured patients. The distribution, long-term predictability, and rhythmicity (circadian/ultradian) of various EEG features were compared with the initial clinical status, the functional outcome, and the circadian rhythmicities of behaviour and clock-controlled hormones. Here we show that more physiological and favourable patterns of fluctuations are associated with a higher 24 h predictability and sharp up-and-down shape of EEG switches, reminiscent of the Flip-Flop model of sleep. Multimodal rhythmic analysis shows that patients with simultaneous circadian rhythmicity for brain, behaviour, and hormones had a favourable outcome. Finally, both re-emerging EEG fluctuations and homogeneous 24-h cycles for EEG, eye-opening, and hormones appeared as surrogates for preserved functionality in brainstem and basal forebrain, which are key prognostic factors for later improvement. While the recovery of consciousness has previously been related to a high short-term complexity, we suggest in this exploratory study the importance of the high predictability of the 24 h long-term generation of brain rhythms and highlight the importance of circadian body-brain rhythms in awakening.


Assuntos
Transtornos da Consciência , Estado de Consciência , Humanos , Estado de Consciência/fisiologia , Ritmo Circadiano/fisiologia , Sono/fisiologia , Hormônios
6.
medRxiv ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37873268

RESUMO

Study Objectives: The body-first Parkinson's disease (PD) hypothesis suggests initial gut Lewy body pathology that propagates to the pons before reaching the substantia nigra, and subsequently progresses to the diencephalic and cortical levels. This disease course may also be the most likely in PD with rapid eye movement sleep behavior disorder (RBD). Objectives: We aimed to explore the potential association between colonic phosphorylated alpha-synuclein histopathology (PASH) and diencephalic or cortical dysfunction evidenced by non-rapid eye movement (NREM) sleep and wakefulness polysomnographic markers. Methods: In a study involving 43 patients with PD who underwent clinical examination, rectosigmoidoscopy, and polysomnography, we detected PASH on colonic biopsies using whole-mount immunostaining. We performed a visual semi-quantitative and automated quantification of spindle and slow wave features of NREM sleep, and the wake dominant frequency, and then determined Braak and Arizona stage classifications for PD severity based on sleep and wake electroencephalographic features. Results: The visual analysis aligned with the automated quantified spindle characteristics and the wake dominant frequency. Altered NREM sleep and wake parameters correlated with markers of PD severity, colonic PASH, and RBD diagnosis. Colonic PASH frequency also increased in parallel to presumed PD Braak and Arizona stage classifications. Conclusions: Colonic PASH in PD is strongly associated with widespread brain sleep and wake dysfunction, pointing toward likely extensive diffusion of the pathological process in the presumptive body-first PD phenotype. Visual and automated analyses of polysomnography signals provide useful markers to gauge covert brain dysfunction in PD. Statement of Significance: The presence of gut synucleinopathy in Parkinson's disease can be linked to the body-first hypothesis in its pathophysiology. This study, performed in a cohort of 43 patients with Parkinson's disease that underwent clinical assessment, rectosigmoidoscopy and polysomnography, provides evidence that colonic neuropathology in Parkinson's disease is associated with widespread brain dysfunction, as evaluated by wake and non-rapid eye movement sleep polysomnographic markers. Our results support the assumption of an extensive diffusion of the pathological process to diencephalic and neocortical structures in the presumptive body-first phenotype. They also suggest the use of routine polysomnography in phenotyping patients with Parkinson's disease. Future studies should investigate the brain diffusion pattern and its sleep markers in the hypothesized brain-first phenotype of Parkinson's disease.

7.
8.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37698926

RESUMO

BACKGROUNDThe locus coeruleus (LC) is the primary source of norepinephrine in the brain and regulates arousal and sleep. Animal research shows that it plays important roles in the transition between sleep and wakefulness, and between slow wave sleep and rapid eye movement sleep (REMS). It is unclear, however, whether the activity of the LC predicts sleep variability in humans.METHODSWe used 7-Tesla functional MRI, sleep electroencephalography (EEG), and a sleep questionnaire to test whether the LC activity during wakefulness was associated with sleep quality in 33 healthy younger (~22 years old; 28 women, 5 men) and 19 older (~61 years old; 14 women, 5 men) individuals.RESULTSWe found that, in older but not in younger participants, higher LC activity, as probed during an auditory attentional task, was associated with worse subjective sleep quality and with lower power over the EEG theta band during REMS. The results remained robust even when accounting for the age-related changes in the integrity of the LC.CONCLUSIONThese findings suggest that LC activity correlates with the perception of the sleep quality and an essential oscillatory mode of REMS, and we found that the LC may be an important target in the treatment of sleep- and age-related diseases.FUNDINGThis work was supported by Fonds National de la Recherche Scientifique (FRS-FNRS, T.0242.19 & J. 0222.20), Action de Recherche Concertée - Fédération Wallonie-Bruxelles (ARC SLEEPDEM 17/27-09), Fondation Recherche Alzheimer (SAO-FRA 2019/0025), ULiège, and European Regional Development Fund (Radiomed & Biomed-Hub).


Assuntos
Locus Cerúleo , Sono REM , Masculino , Animais , Humanos , Feminino , Idoso , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/fisiologia , Vigília/fisiologia , Qualidade do Sono , Sono/fisiologia
9.
J Sleep Res ; : e13961, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287324

RESUMO

The Maintenance of Wakefulness Test is widely used to objectively assess sleepiness and make safety-related decisions, but its interpretation is subjective and normative values remain debated. Our work aimed to determine normative thresholds in non-subjectively sleepy patients with well-treated obstructive sleep apnea, and to assess intra- and inter-scorer variability. We included maintenance of wakefulness tests of 141 consecutive patients with treated obstructive sleep apnea (90% men, mean (SD) age 47.5 (9.2) years, mean (SD) pre-treatment apnea-hypopnea index of 43.8 (20.3) events/h). Sleep onset latencies were independently scored by two experts. Discordant scorings were reviewed to reach a consensus and half of the cohort was double-scored by each scorer. Intra- and inter-scorer variability was assessed using Cohen's kappa for 40, 33, and 19 min mean sleep latency thresholds. Consensual mean sleep latencies were compared between four groups according to subjective sleepiness (Epworth Sleepiness Scale score < versus ≥11) and residual apnea-hypopnea index (< versus ≥15 events/h). In well-treated non-sleepy patients (n = 76), the consensual mean (SD) sleep latency was 38.4 (4.2) min (lower normal limit [mean - 2SD] = 30 min), and 80% of them did not fall asleep. Intra-scorer agreement on mean sleep latency was high but inter-scorer was only fair (Cohen's kappa 0.54 for 33-min threshold, 0.27 for 19-min threshold), resulting in changes in latency category in 4%-12% of patients. A higher sleepiness score but not the residual apnea-hypopnea index was significantly associated with a lower mean sleep latency. Our findings suggest a higher than usually accepted normative threshold (30 min) in this context and emphasise the need for more reproducible scoring approaches.

10.
Sleep ; 46(9)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37010079

RESUMO

The circadian system orchestrates sleep timing and structure and is altered with increasing age. Sleep propensity, and particularly REM sleep is under strong circadian control and has been suggested to play an important role in brain plasticity. In this exploratory study, we assessed whether surface-based brain morphometry indices are associated with circadian sleep regulation and whether this link changes with age. Twenty-nine healthy older (55-82 years; 16 men) and 28 young participants (20-32 years; 13 men) underwent both structural magnetic resonance imaging and a 40-h multiple nap protocol to extract sleep parameters over day and night time. Cortical thickness and gyrification indices were estimated from T1-weighted images acquired during a classical waking day. We observed that REM sleep was significantly modulated over the 24-h cycle in both age groups, with older adults exhibiting an overall reduction in REM sleep modulation compared to young individuals. Interestingly, when taking into account the observed overall age-related reduction in REM sleep throughout the circadian cycle, higher day-night differences in REM sleep were associated with increased cortical gyrification in the right inferior frontal and paracentral regions in older adults. Our results suggest that a more distinctive allocation of REM sleep over the 24-h cycle is associated with regional cortical gyrification in aging, and thereby point towards a protective role of circadian REM sleep regulation for age-related changes in brain organization.


Assuntos
Ritmo Circadiano , Sono , Masculino , Humanos , Idoso , Ritmo Circadiano/fisiologia , Sono/fisiologia , Sono REM/fisiologia , Envelhecimento/fisiologia , Encéfalo
11.
bioRxiv ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36993680

RESUMO

The locus coeruleus (LC) is the primary source of norepinephrine (NE) in the brain, and the LC-NE system is involved in regulating arousal and sleep. It plays key roles in the transition between sleep and wakefulness, and between slow wave sleep (SWS) and rapid eye movement sleep (REMS). However, it is not clear whether the LC activity during the day predicts sleep quality and sleep properties during the night, and how this varies as a function of age. Here, we used 7 Tesla functional Magnetic Resonance Imaging (7T fMRI), sleep electroencephalography (EEG) and a sleep questionnaire to test whether the LC activity during wakefulness was associated with sleep quality in 52 healthy younger (N=33; ~22y; 28 women) and older (N=19; ~61y; 14 women) individuals. We find that, in older, but not in younger participants, higher LC activity, as probed during an auditory mismatch negativity task, is associated with worse subjective sleep quality and with lower power over the EEG theta band during REMS (4-8Hz), which are two sleep parameters significantly correlated in our sample of older individuals. The results remain robust even when accounting for the age-related changes in the integrity of the LC. These findings suggest that the activity of the LC may contribute to the perception of the sleep quality and to an essential oscillatory mode of REMS, and that the LC may be an important target in the treatment of sleep disorders and age-related diseases.

12.
Neuroimage ; 272: 120045, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36997136

RESUMO

Sleep has been suggested to contribute to myelinogenesis and associated structural changes in the brain. As a principal hallmark of sleep, slow-wave activity (SWA) is homeostatically regulated but also differs between individuals. Besides its homeostatic function, SWA topography is suggested to reflect processes of brain maturation. Here, we assessed whether interindividual differences in sleep SWA and its homeostatic response to sleep manipulations are associated with in-vivo myelin estimates in a sample of healthy young men. Two hundred twenty-six participants (18-31 y.) underwent an in-lab protocol in which SWA was assessed at baseline (BAS), after sleep deprivation (high homeostatic sleep pressure, HSP) and after sleep saturation (low homeostatic sleep pressure, LSP). Early-night frontal SWA, the frontal-occipital SWA ratio, as well as the overnight exponential SWA decay were computed over sleep conditions. Semi-quantitative magnetization transfer saturation maps (MTsat), providing markers for myelin content, were acquired during a separate laboratory visit. Early-night frontal SWA was negatively associated with regional myelin estimates in the temporal portion of the inferior longitudinal fasciculus. By contrast, neither the responsiveness of SWA to sleep saturation or deprivation, its overnight dynamics, nor the frontal/occipital SWA ratio were associated with brain structural indices. Our results indicate that frontal SWA generation tracks inter-individual differences in continued structural brain re-organization during early adulthood. This stage of life is not only characterized by ongoing region-specific changes in myelin content, but also by a sharp decrease and a shift towards frontal predominance in SWA generation.


Assuntos
Eletroencefalografia , Bainha de Mielina , Masculino , Humanos , Adulto , Sono/fisiologia , Privação do Sono , Encéfalo
13.
Neurobiol Dis ; 175: 105924, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371058

RESUMO

Insomnia disorder (ID) is the second most common neuropsychiatric disorder. Its socioeconomic burden is enormous while diagnosis and treatment are difficult. A novel approach that reveals associations between insomnia genetic propensity and sleep phenotypes in youth may help understand the core of the disease isolated from comorbidities and pave the way for new treatments. We obtained quantitative nocturnal sleep electroencephalogram (EEG) features in 456 participants (18-31y, 49 women). Sleep EEG was recorded during a baseline night following at least 7 days of regular sleep times. We then assessed daytime sleep onset latency in a subsample of N = 359 men exposed to manipulations affecting sleep pressure. We sampled saliva or blood for polygenic risk score (PRS) determination. The PRS for ID was computed based on genome-wide common single nucleotide polymorphism assessments. Participants also completed a battery of behavioral and cognitive tests. The analyses revealed that the PRS for ID was negatively associated with cumulated EEG power in the delta (0.5-4 Hz) and theta (4-8 Hz) bands across rapid eye movement (REM) and non-REM sleep (p ≤ .0026; ß ≥ -0.13) controlling for age, sex and BMI. The PRS for ID was also negatively associated with daytime likelihood of falling asleep (ß = -0.19, p = .0009). Other explorations for associations with non-baseline-nights, cognitive measures, and mood did not yield significant results. These results propose that the need or the ability to fall asleep and to generate slow brain activity during sleep may constitute the core sleep-related risk factors for developing ID.


Assuntos
Distúrbios do Início e da Manutenção do Sono , Feminino , Humanos , Distúrbios do Início e da Manutenção do Sono/genética , Sono/genética , Sono REM , Eletroencefalografia/métodos , Fatores de Risco
14.
Front Neurosci ; 16: 908268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36161169

RESUMO

Background: Previous studies have revealed both sleep alterations and prospective memory (PM) impairments in breast cancer (BC) patients. PM refers to memory of intended actions and is crucial for daily living tasks and treatment compliance. As sleep is known to favor memory consolidation, one may expect that changes in sleep quality related to BC would have an impact on PM performance. This study aimed at assessing sleep-dependent consolidation of intentions using an ecological, virtual reality-based PM task in BC patients not treated with chemotherapy. Materials and methods: Thirty-seven early stages BC patients and 21 healthy controls (HC) participated in this study. PM was assessed using a virtual reality task, during which participants learnt a list of intentions and recalled them after a retention interval filled with a day awake or a night of sleep monitored by polysomnography. Sleep spindles and slow waves, brain oscillations involved in sleep-dependent memory consolidation, were quantified automatically using the Aseega software (Physip). Subjective sleep disturbances and markers of quality of life (psychological distress, fatigue, and well-being) were assessed by questionnaires. Results: Greater PM performance was observed after sleep than after an equivalent period of daytime wakefulness for both groups (HC and BC). PM performance after sleep did not differ significantly between groups. Yet, BC patients reported greater sleep disturbances than HC which were related with poorer intentions retrieval, greater psychological distress, fatigue and poorer well-being. The frequency of spindles was higher and the amplitude of slow waves lower in BC patients compared to HC. However, no significant association was observed between polysomnography parameters and PM scores in the whole sample of participants. Conclusion: Although subtle changes in brain oscillations involved in sleep-dependent memory consolidation were observed, these changes did not significantly impair overnight PM consolidation in BC patients. Nevertheless, poorer PM performance was associated with greater sleep complaints which in turn were related to poorer quality of life. Overall, these data suggest that sleep-dependent PM consolidation mechanisms are not altered in early stages BC patients not treated with chemotherapy. Further investigations are needed to understand the association between markers of quality of life and sleep-dependent memory consolidation.

15.
Sleep ; 45(11)2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-35869626

RESUMO

STUDY OBJECTIVES: The ability to generate slow waves (SW) during non-rapid eye movement (NREM) sleep decreases as early as the 5th decade of life, predominantly over frontal regions. This decrease may concern prominently SW characterized by a fast switch from hyperpolarized to depolarized, or down-to-up, state. Yet, the relationship between these fast and slow switcher SW and cerebral microstructure in ageing is not established. METHODS: We recorded habitual sleep under EEG in 99 healthy late midlife individuals (mean age = 59.3 ± 5.3 years; 68 women) and extracted SW parameters (density, amplitude, frequency) for all SW as well as according to their switcher type (slow vs. fast). We further used neurite orientation dispersion and density imaging (NODDI) to assess microstructural integrity over a frontal grey matter region of interest (ROI). RESULTS: In statistical models adjusted for age, sex, and sleep duration, we found that a lower SW density, particularly for fast switcher SW, was associated with a reduced orientation dispersion of neurites in the frontal ROI (p = 0.018, R2ß* = 0.06). In addition, overall SW frequency was positively associated with neurite density (p = 0.03, R2ß* = 0.05). By contrast, we found no significant relationships between SW amplitude and NODDI metrics. CONCLUSIONS: Our findings suggest that the complexity of neurite organization contributes specifically to the rate of fast switcher SW occurrence in healthy middle-aged individuals, corroborating slow and fast switcher SW as distinct types of SW. They further suggest that the density of frontal neurites plays a key role for neural synchronization during sleep. TRIAL REGISTRATION NUMBER: EudraCT 2016-001436-35.


Assuntos
Substância Cinzenta , Substância Branca , Pessoa de Meia-Idade , Humanos , Feminino , Substância Cinzenta/diagnóstico por imagem , Sono , Córtex Cerebral , Neuritos , Envelhecimento , Encéfalo
16.
Elife ; 112022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35638265

RESUMO

Sleep alteration is a hallmark of ageing and emerges as a risk factor for Alzheimer's disease (AD). While the fine-tuned coalescence of sleep microstructure elements may influence age-related cognitive trajectories, its association with AD processes is not fully established. Here, we investigated whether the coupling of spindles and slow waves (SW) is associated with early amyloid-ß (Aß) brain burden, a hallmark of AD neuropathology, and cognitive change over 2 years in 100 healthy individuals in late-midlife (50-70 years; 68 women). We found that, in contrast to other sleep metrics, earlier occurrence of spindles on slow-depolarisation SW is associated with higher medial prefrontal cortex Aß burden (p=0.014, r²ß*=0.06) and is predictive of greater longitudinal memory decline in a large subsample (p=0.032, r²ß*=0.07, N=66). These findings unravel early links between sleep, AD-related processes, and cognition and suggest that altered coupling of sleep microstructure elements, key to its mnesic function, contributes to poorer brain and cognitive trajectories in ageing.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Cognição , Feminino , Humanos , Transtornos da Memória , Sono
17.
J Sleep Res ; 31(1): e13424, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34169604

RESUMO

Sleep stage scoring can lead to important inter-expert variability. Although likely, whether this issue is amplified in older populations, which show alterations of sleep electrophysiology, has not been thoroughly assessed. Algorithms for automatic sleep stage scoring may appear ideal to eliminate inter-expert variability. Yet, variability between human experts and algorithm sleep stage scoring in healthy older individuals has not been investigated. Here, we aimed to compare stage scoring of older individuals and hypothesized that variability, whether between experts or considering the algorithm, would be higher than usually reported in the literature. Twenty cognitively normal and healthy late midlife individuals' (61 ± 5 years; 10 women) night-time sleep recordings were scored by two experts from different research centres and one algorithm. We computed agreements for the entire night (percentage and Cohen's κ) and each sleep stage. Whole-night pairwise agreements were relatively low and ranged from 67% to 78% (κ, 0.54-0.67). Sensitivity across pairs of scorers proved lowest for stages N1 (8.2%-63.4%) and N3 (44.8%-99.3%). Significant differences between experts and/or algorithm were found for total sleep time, sleep efficiency, time spent in N1/N2/N3 and wake after sleep onset (p ≤ 0.005), but not for sleep onset latency, rapid eye movement (REM) and slow-wave sleep (SWS) duration (N2 + N3). Our results confirm high inter-expert variability in healthy aging. Consensus appears good for REM and SWS, considered as a whole. It seems more difficult for N3, potentially because human raters adapt their interpretation according to overall changes in sleep characteristics. Although the algorithm does not substantially reduce variability, it would favour time-efficient standardization.


Assuntos
Eletroencefalografia , Fases do Sono , Idoso , Feminino , Humanos , Polissonografia , Reprodutibilidade dos Testes , Sono
18.
JCI Insight ; 6(24)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34784296

RESUMO

BACKGROUNDTight relationships between sleep quality, cognition, and amyloid-ß (Aß) accumulation, a hallmark of Alzheimer's disease (AD) neuropathology, have been shown. Sleep arousals become more prevalent with aging and are considered to reflect poorer sleep quality. However, heterogeneity in arousals has been suggested while their associations with Aß and cognition are not established.METHODSWe recorded undisturbed night-time sleep with EEG in 101 healthy individuals aged 50-70 years, devoid of cognitive and sleep disorders. We classified spontaneous arousals according to their association with muscular tone increase (M+/M-) and sleep stage transition (T+/T-). We assessed cortical Aß burden over earliest affected regions via PET imaging and assessed cognition via neuropsychological testing.RESULTSArousal types differed in their oscillatory composition in θ (4-8 Hz) and ß (16-30 Hz) EEG bands. Furthermore, T+M- arousals, interrupting sleep continuity, were positively linked to Aß burden (P = 0.0053, R²ß* = 0.08). By contrast, more prevalent T-M+ arousals, upholding sleep continuity, were associated with lower Aß burden (P = 0.0003, R²ß* = 0.13), and better cognition, particularly over the attentional domain (P < 0.05, R²ß* ≥ 0.04).CONCLUSIONContrasting with what is commonly accepted, we provide empirical evidence that arousals are diverse and differently associated with early AD-related neuropathology and cognition. This suggests that sleep arousals, and their coalescence with other brain oscillations during sleep, may actively contribute to the beneficial functions of sleep and constitute markers of favorable brain and cognitive health trajectories.TRIAL REGISTRATIONEudraCT 2016-001436-35.FUNDINGFRS-FNRS Belgium (FRSM 3.4516.11), Actions de Recherche Concertées Fédération Wallonie-Bruxelles (SLEEPDEM 17/27-09), ULiège, and European Regional Development Fund (Radiomed Project).


Assuntos
Peptídeos beta-Amiloides/metabolismo , Cognição/fisiologia , Heterogeneidade Genética , Qualidade do Sono , Sono/genética , Idoso , Nível de Alerta , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
19.
J Biol Rhythms ; 36(4): 384-394, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34024173

RESUMO

Acute caffeine intake can attenuate homeostatic sleep pressure and worsen sleep quality. Caffeine intake-particularly in high doses and close to bedtime-may also affect circadian-regulated rapid eye movement (REM) sleep promotion, an important determinant of subjective sleep quality. However, it is not known whether such changes persist under chronic caffeine consumption during daytime. Twenty male caffeine consumers (26.4 ± 4 years old, habitual caffeine intake 478.1 ± 102.8 mg/day) participated in a double-blind crossover study. Each volunteer completed a caffeine (3 × 150 mg caffeine daily for 10 days), a withdrawal (3 × 150 mg caffeine for 8 days then placebo), and a placebo condition. After 10 days of controlled intake and a fixed sleep-wake cycle, we recorded electroencephalography for 8 h starting 5 h after habitual bedtime (i.e., start on average at 04:22 h which is around the peak of circadian REM sleep promotion). A 60-min evening nap preceded each sleep episode and reduced high sleep pressure levels. While total sleep time and sleep architecture did not significantly differ between the three conditions, REM sleep latency was longer after daily caffeine intake compared with both placebo and withdrawal. Moreover, the accumulation of REM sleep proportion was delayed, and volunteers reported more difficulties with awakening after sleep and feeling more tired upon wake-up in the caffeine condition compared with placebo. Our data indicate that besides acute intake, also regular daytime caffeine intake affects REM sleep regulation in men, such that it delays circadian REM sleep promotion when compared with placebo. Moreover, the observed caffeine-induced deterioration in the quality of awakening may suggest a potential motive to reinstate caffeine intake after sleep.


Assuntos
Cafeína , Sono REM , Cafeína/farmacologia , Pré-Escolar , Ritmo Circadiano , Estudos Cross-Over , Eletroencefalografia , Humanos , Masculino , Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...