RESUMO
Preeclampsia (PE) is a gestational hypertensive disease characterized by endothelial dysfunction. Epigallocatechin-3-gallate (EGCG), the main compound in green tea, is a promising therapeutic target for the disease. By activating eNOS, EGCG increased NO production and exerted an important antioxidant action, but its specific impact in the context of PE remains understudied. The aim of this study is to evaluate the effects of EGCG on endothelial function in static and shear stress in in vitro models of PE. Endothelial cells were incubated with healthy (HP) and preeclamptic (PE) pregnant women's plasma, and the latter group was treated with EGCG. Additionally, NOS (L-NAME) and PI3K protein (LY249002) inhibitors were also used. The levels of NO, ROS, and O2â¢- were evaluated, as well as the antioxidant potential. These investigations were also carried out in a shear stress model. We found that EGCG increases the NO levels, which were reduced in the PE group. This effect was attenuated with the use of L-NAME and LY249002. Furthermore, EGCG increased the antioxidant capacity of PE, but its action decreased with LY294002. In cells subjected to shear stress, EGCG increased nitrite levels in the PE group and maintained its action on the antioxidant capacity. This is the first study of the effects of EGCG in this experimental model, as well as the investigation of its effects along with shear stress. Our findings suggest that EGCG improves parameters of endothelial dysfunction in vitro, making it a promising target in the search for treatments for the disease.
RESUMO
Preeclampsia (PE) is characterized by great endothelial dysfunction, decreased nitric oxide (NO) bioavailability, and higher levels of arginase activity. In the present study, we investigated the potential modulatory effects of trans-resveratrol (RSV) on arginase and endothelial dysfunction biomarkers in endothelial cells exposed to plasma from patients with PE and healthy pregnant (HP) women, and umbilical arteries from patients with PE. Human umbilical vein endothelial cells (HUVECs) were incubated with pooled plasma from 10 HP or 10 PE pregnant women and RSV; umbilical arteries from patients with PE were incubated with RSV; intracellular NO and total reactive oxygen species (ROS) levels were assessed using a probe that interacted with these radicals; total arginase activity was evaluated measuring the urea produced; total antioxidant capacity was measured using the ferric reduction ability power (FRAP) assay; and endothelial dysfunction biomarkers were assessed using qPCR in endothelial cells and umbilical arteries. RSV increased NO levels and decreased total arginase activity in endothelial cells incubated with plasma from patients with PE. In addition, RSV increased total antioxidant capacity and downregulated endothelial dysfunction biomarkers, such as intercellular adhesion molecule-1 (ICAM-1), von Willebrand factor (vWF), and Caspase-3, (CASP-3), in endothelial cells and umbilical arteries from PE patients. RSV treatment positively modulated the L-arginine-NO pathway, decreased arginase activity, and increased antioxidant capacity, in addition to downregulating endothelial dysfunction biomarkers.
RESUMO
(1) Background: The bioavailability of nitric oxide (NO) and oxidative stress are important events related to the pathophysiology of preeclampsia (PE). In this present study, we aimed to evaluate the antioxidant effect of glibenclamide (GB) on the NO synthesis, oxidative stress, and antioxidant capacity in endothelial cells incubated with plasma from preeclamptic (PE) and normotensive pregnant women (NT). (2) Methods: Human umbilical vein endothelial cells (HUVECs) were incubated with a plasma pool from 10 NT and 10 PE pregnant women; NO/NOx quantification and ROS levels were assessed by a fluorescence compound; lipid peroxidation was evaluated employing thiobarbituric acid (TBA); and total antioxidant capacity was measured by ferric reduction ability power (FRAP) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). (3) Results: We found that endothelial cells incubated with plasma from PE showed lower NO and NOx levels compared with the NT group. However, GB treatment increased these levels, as well as the antioxidant capacity. Furthermore, a decrease was observed in ROS generation and lipid peroxidation (4) Conclusions: The GB treatment exerted a positive effect on the NO/NOx production by HUVEC incubated with plasma from NT and PE pregnant women, as well as in the reduction in oxidative stress and increase in the antioxidant capacity.
RESUMO
BACKGROUND AND AIMS: Preeclampsia (PE) is a gestational hypertensive disease responsible for high maternal and fetal morbidity and mortality. The increase in blood pressure is associated with a decrease in the bioavailability of nitric oxide (NO). Arginase interferes with NO production consuming L-arginine, a substrate required by endothelial NO synthase to NO formation. No previous study has quantified the circulating levels of the two arginase isoforms (arginase 1 and arginase 2) in the plasma of pregnant women with PE. Therefore, our objective is to evaluate these plasma levels in healthy pregnant women and PE with or without severe features and who respond or not to antihypertensive therapy. METHODS: We compared 29 healthy pregnant women with 56 pregnant women with PE, who were also divided into with severe features (n = 24) or without severe features (n = 32) and into responsive (n = 29) or nonresponsive to antihypertensive therapy (n = 27). We quantified the plasmatic expression of arginase 1 and arginase 2 by ELISA kits. RESULTS: While similar levels of arginase 1 were found among groups, lower arginase 2 plasma levels were found in PE without severe features and responsive to antihypertensive drugs when compared to healthy pregnant women. There was no difference between arginase 2 levels in PE with severe features and nonresponsive group when compared to healthy pregnant women. CONCLUSION: This shows different circulation profiles of arginase 2 among groups, suggesting the existence of mechanisms of arginase 2 modulation in pregnant women with PE associated with the severity of the disease and responsiveness to antihypertensive treatment.
Assuntos
Anti-Hipertensivos/administração & dosagem , Arginase/sangue , Óxido Nítrico/metabolismo , Pré-Eclâmpsia , Adulto , Arginina/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/tratamento farmacológico , Gravidez , Adulto JovemRESUMO
Preeclampsia (PE) is a multifactorial hypertensive disorder of pregnancy that is partly responsible for both maternal and fetal morbidity and mortality levels worldwide. It has been recently discovered that sirtuin-1 (SIRT1) is reduced in the circulation and in an in vitro model of PE. Therefore, in this study, we investigated the effects of trans-resveratrol, a potent antioxidant and activator of SIRT1, on oxidative stress and nitric oxide (NO) production in an in vitro model of PE compared to gestational hypertensive (GH) and healthy pregnant (HP) women. Furthermore, we also evaluated the effects of an acute intake of grape juice on women with PE to assess whether it could mimic in vitro trans-resveratrol supplementation. (1) In the GH group, resveratrol decreased intracellular reactive oxygen species (ROS) and increased their antioxidant capacity, while inhibiting SIRT1 reestablished previous levels. (2) In PE, inhibition of SIRT1 increased antioxidant activity. (3) Intracellular NO and supernatant nitrite levels were increased by inhibiting SIRT1 in the PE group. (4) Grape juice intake increased intracellular NO levels versus before grape juice intake control; however, the inhibition of SIRT1 before grape juice intake initially increased NO, but decreased it 1 h after grape juice intake. In conclusion, activating SIRT1 by using resveratrol alone may not be beneficial to women with PE, and GH and PE seem to have different responsive mechanisms to this molecule. Furthermore, grape juice intake seems to have different effects compared to resveratrol supplementation alone in this in vitro model of PE, demonstrating the potential of the combination of other biologically active molecules from grape juice over the SIRT1-eNOS-NO in PE treatment.