Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Science ; 380(6651): eade0850, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37347870

RESUMO

Over the past decade, there have been considerable efforts to observe non-abelian quasiparticles in novel quantum materials and devices. These efforts are motivated by the goals of demonstrating quantum statistics of quasiparticles beyond those of fermions and bosons and of establishing the underlying science for the creation of topologically protected quantum bits. In this Review, we focus on efforts to create topological superconducting phases that host Majorana zero modes. We consider the lessons learned from existing experimental efforts, which are motivating both improvements to present platforms and the exploration of new approaches. Although the experimental detection of non-abelian quasiparticles remains challenging, the knowledge gained thus far and the opportunities ahead offer high potential for discovery and advances in this exciting area of quantum physics.

2.
Science ; 375(6577): 205-209, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35025642

RESUMO

In fermionic systems, superconductivity and superfluidity occur through the condensation of fermion pairs. The nature of this condensate can be tuned by varying the pairing strength, which is challenging in electronic systems. We studied graphene double layers separated by an atomically thin insulator. Under applied magnetic field, electrons and holes couple across the barrier to form bound magneto-excitons whose pairing strength can be continuously tuned by varying the effective layer separation. Using temperature-dependent Coulomb drag and counterflow current measurements, we were able to tune the magneto-exciton condensate through the entire phase diagram from weak to strong coupling. Our results establish magneto-exciton condensates in graphene as a model platform to study the crossover between two bosonic quantum condensate phases in a solid-state system.

3.
Phys Rev Lett ; 127(24): 246803, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34951796

RESUMO

We introduce a new variational wave function for a quantum Hall bilayer at total filling ν_{T}=1, which is based on s-wave BCS pairing between electron composite fermions in one layer and hole composite fermions in the other. In addition, we reexamine a trial wave function based on p-wave BCS pairing between electron composite fermions in both layers. We compute the overlap of the optimized trial functions with the ground state from exact diagonalization calculations of up to 14 electrons in a spherical geometry, and we find excellent agreement over the entire range of values of the ratio between the layer separation and the magnetic length. The s-wave trial wave function naturally allows for charge imbalance between the layers and provides important insights into how the physics at large interlayer separations crosses over to that at small separations in a fashion analogous to the BEC-BCS crossover.

4.
Sci Total Environ ; 797: 149112, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34346352

RESUMO

High concentrations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome have been described in wastewater and sewage sludge. It raises the question of the security of land sludge disposal practices during a pandemic. This study aimed to compare SARS-CoV-2's resistance to the main inactivating factors in sludge treatments, pH and heat, to that of native wastewater somatic coliphages. The latest can be easily used as an indicator of treatment efficiency in the field. The effects of heat treatment and pH on the survival of SARS-CoV-2 and somatic coliphages were investigated in simple media. The T90 value (time required for a 90% reduction in the virus or a 1 × log10 decline) at 50 °C was about 4 min for infectious SARS-CoV-2, and around 133 min for infectious somatic coliphages, with no decrease in SARS-CoV-2 genome. For infectious SARS-CoV-2, a slight decrease (<1 log10 unit) was observed at pH 9 or 10 for 10 min; the decrease was over 5 log10 units at pH 11. However, both SARS-CoV-2 genome and infectious somatic coliphages decreased by less than 1 log10 unit at pH 12. All thermal or pH-based treatments that can remove or significantly reduce infectious somatic coliphages (>4 log10) can be considered efficient treatments for infectious SARS-CoV-2. We concluded that somatic coliphages can be considered highly conservative and easy to use indicators of the inactivation of SARS-CoV-2 during treatments based on heat and alkaline pH.


Assuntos
COVID-19 , SARS-CoV-2 , Colífagos , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio
5.
Rep Prog Phys ; 84(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34015771

RESUMO

Quasiparticles with fractional charge and fractional statistics are key features of the fractional quantum Hall effect. We discuss in detail the definitions of fractional charge and statistics and the ways in which these properties may be observed. In addition to theoretical foundations, we review the present status of the experiments in the area. We also discuss the notions of non-Abelian statistics and attempts to find experimental evidence for the existence of non-Abelian quasiparticles in certain quantum Hall systems.

6.
Nature ; 569(7754): 93-98, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31019296

RESUMO

Topological superconductors can support localized Majorana states at their boundaries1-5. These quasi-particle excitations obey non-Abelian statistics that can be used to encode and manipulate quantum information in a topologically protected manner6,7. Although signatures of Majorana bound states have been observed in one-dimensional systems, there is an ongoing effort to find alternative platforms that do not require fine-tuning of parameters and can be easily scaled to large numbers of states8-21. Here we present an experimental approach towards a two-dimensional architecture of Majorana bound states. Using a Josephson junction made of a HgTe quantum well coupled to thin-film aluminium, we are able to tune the transition between a trivial and a topological superconducting state by controlling the phase difference across the junction and applying an in-plane magnetic field22. We determine the topological state of the resulting superconductor by measuring the tunnelling conductance at the edge of the junction. At low magnetic fields, we observe a minimum in the tunnelling spectra near zero bias, consistent with a trivial superconductor. However, as the magnetic field increases, the tunnelling conductance develops a zero-bias peak, which persists over a range of phase differences that expands systematically with increasing magnetic field. Our observations are consistent with theoretical predictions for this system and with full quantum mechanical numerical simulations performed on model systems with similar dimensions and parameters. Our work establishes this system as a promising platform for realizing topological superconductivity and for creating and manipulating Majorana modes and probing topological superconducting phases in two-dimensional systems.

7.
Water Res ; 151: 144-157, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30594083

RESUMO

Hepatitis E virus (HEV) is an enteric virus divided into eight genotypes. Genotype 1 (G1) and G2 are specific to humans; G3, G4 and G7 are zoonotic genotypes infecting humans and animals. Transmission to humans through water has been demonstrated for G1 and G2, mainly in developing countries, but is only suspected for the zoonotic genotypes. Thus, the water-related HEV hazard may be due to human and animal faeces. The high HEV genetic variability allows considering the presence in wastewater of not only different genotypes, but also quasispecies adding even greater diversity. Moreover, recent studies have demonstrated that HEV particles may be either quasi-enveloped or non-enveloped, potentially implying differential viral behaviours in the environment. The presence of HEV has been demonstrated at the different stages of the water cycle all over the world, especially for HEV G3 in Europe and the USA. Concerning HEV survival in water, the virus does not have higher resistance to inactivating factors (heat, UV, chlorine, physical removal), compared to viral indicators (MS2 phage) or other highly resistant enteric viruses (Hepatitis A virus). But the studies did not take into account genetic (genogroups, quasispecies) or structural (quasi- or non-enveloped forms) HEV variability. Viral variability could indeed modify HEV persistence in water by influencing its interaction with the environment, its infectivity and its pathogenicity, and subsequently its transmission by water. The cell culture methods used to study HEV survival still have drawbacks (challenging virus cultivation, time consuming, lack of sensitivity). As explained in the present review, the issue of HEV transmission to humans through water is similar to that of other enteric viruses because of their similar or lower survival. HEV transmission to animals through water and how the virus variability affects its survival and transmission remain to be investigated.


Assuntos
Vírus da Hepatite E , Hepatite E , Animais , Países Desenvolvidos , Europa (Continente) , Humanos , Água
8.
Science ; 362(6411): 229-233, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30309954

RESUMO

Spin waves are collective excitations of magnetic systems. An attractive setting for studying long-lived spin-wave physics is the quantum Hall (QH) ferromagnet, which forms spontaneously in clean two-dimensional electron systems at low temperature and in a perpendicular magnetic field. We used out-of-equilibrium occupation of QH edge channels in graphene to excite and detect spin waves in magnetically ordered QH states. Our experiments provide direct evidence for long-distance spin-wave propagation through different ferromagnetic phases in the N = 0 Landau level, as well as across the insulating canted antiferromagnetic phase. Our results will enable experimental investigation of the fundamental magnetic properties of these exotic two-dimensional electron systems.

9.
Food Environ Virol ; 10(3): 253-262, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29761412

RESUMO

Although information is limited, it is evident that prolonged persistence of infectious Hepatitis A virus (HAV) is a factor in the transmission of the virus via fresh produce. Consequently, data on persistence of the virus on produce, and in environments relevant to production, such as soils, water and surfaces, are required to fully understand the dynamics of transmission of HAV via foods. Furthermore, information on effective disinfection procedures is necessary to implement effective post-harvest control measures. This review summarises current information on HAV persistence in fresh produce and on relevant disinfection procedures. On vegetables, HAV can remain infectious for several days; on frozen berries, it can persist for several months. HAV can remain infectious on surfaces for months, depending on temperature and relative humidity, and can survive desiccation. It can survive for several hours on hands. Washing hands can remove the virus, but further data are required on the appropriate procedure. Chlorination is effective in water, but not when HAV is associated with foodstuffs. Bleach and other sodium hypochlorite disinfectants at high concentrations can reduce HAV on surfaces, but are not suitable for use on fresh produce. There is only limited information on the effects of heating regimes used in the food industry on HAV. HAV is resistant to mild pasteurisation. Some food components, e.g. fats and sugars, can increase the virus' resistance to higher temperatures. HAV is completely eliminated by boiling. Quantitative prevalence data are needed to allow the setting of appropriate disinfection log reduction targets for fresh produce.


Assuntos
Desinfecção/métodos , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Vírus da Hepatite A/isolamento & purificação , Verduras/virologia , Desinfetantes/farmacologia , Manipulação de Alimentos/instrumentação , Vírus da Hepatite A/efeitos dos fármacos , Vírus da Hepatite A/genética , Vírus da Hepatite A/fisiologia
10.
J Clin Virol ; 103: 63-70, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29656087

RESUMO

BACKGROUND AND OBJECTIVES: Hepatitis E virus (HEV) is emerging but its circulation between humans and the environment remains misunderstood. HEV ORF2 gene encodes the capsid playing a key role in viral interactions with surfaces, ORF3 products are involved in the viral cycle. Our aim was to study the molecular characteristics of ORF2 and ORF3 which could favor HEV fitness in patients and the environment. STUDY DESIGN: Samples from 69 patients with hepatitis (blood/stools), 20 urban wastewaters, 20 effluents of a pig slaughterhouse, 22 farm pigs (stools), 20 wild boars (liver/stools) were collected in North-Eastern France. HEV strains were analyzed by direct sequencing within the ORF2 M region, of ORF2/ORF3, for phylogeny and physicochemical prediction and for ORF2 by ultra-deep sequencing. RESULTS: The results showed frequent HEV-positive samples: 9.1% of the patient bloods, 23.1% of their stools; 25.0% of wastewaters, 75.0% for the slaughterhouse, 10.0% of the boar livers, 5.3% of their stools. The strains were classified as HEV genotype 3. In ORF2, HEV highlighted one homogeneous major viral variant within quasispecies and a decrease in predicted antigenicity for two minor mutations (D442G, V402A). A cysteine signature at position 81 in ORF3 was observed in the boars. CONCLUSIONS: HEV RNA genotype 3 was detected in patients and in animals, in a slaughterhouse effluent and in wastewater. Moreover, the low variability of amino acids in the ORF2 M region and molecular features in ORF2 and ORF3 suggested that HEV strains could be advantageous for key properties.


Assuntos
Fezes/virologia , Genótipo , Vírus da Hepatite E/classificação , Hepatite E/epidemiologia , Hepatite E/veterinária , Esgotos/virologia , Doenças dos Suínos/virologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , França/epidemiologia , Vírus da Hepatite E/genética , Vírus da Hepatite E/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Análise de Sequência de DNA , Sus scrofa , Suínos , Doenças dos Suínos/epidemiologia , Proteínas Virais/genética
11.
Sci Adv ; 3(8): e1700600, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28835920

RESUMO

Confined to a two-dimensional plane, electrons in a strong magnetic field travel along the edge in one-dimensional quantum Hall channels that are protected against backscattering. These channels can be used as solid-state analogs of monochromatic beams of light, providing a unique platform for studying electron interference. Electron interferometry is regarded as one of the most promising routes for studying fractional and non-Abelian statistics and quantum entanglement via two-particle interference. However, creating an edge-channel interferometer in which electron-electron interactions play an important role requires a clean system and long phase coherence lengths. We realize electronic Mach-Zehnder interferometers with record visibilities of up to 98% using spin- and valley-polarized edge channels that copropagate along a pn junction in graphene. We find that interchannel scattering between same-spin edge channels along the physical graphene edge can be used to form beamsplitters, whereas the absence of interchannel scattering along gate-defined interfaces can be used to form isolated interferometer arms. Surprisingly, our interferometer is robust to dephasing effects at energies an order of magnitude larger than those observed in pioneering experiments on GaAs/AlGaAs quantum wells. Our results shed light on the nature of edge-channel equilibration and open up new possibilities for studying exotic electron statistics and quantum phenomena.

12.
Phys Rev Lett ; 119(2): 027601, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28753343

RESUMO

In the half filled zero-energy Landau level of bilayer graphene, competing phases with spontaneously broken symmetries and an intriguing quantum critical behavior have been predicted. Here we investigate signatures of these broken-symmetry phases in thermal transport measurements. To this end, we calculate the spectrum of spin and valley waves in the ν=0 quantum Hall state of bilayer graphene. The presence of Goldstone modes enables heat transport even at low temperatures, which can serve as compelling evidence for spontaneous symmetry breaking. By varying external electric and magnetic fields, it is possible to determine the nature of the symmetry breaking. Temperature-dependent measurements may yield additional information about gapped modes.

13.
J Appl Microbiol ; 121(4): 1189-97, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27452787

RESUMO

AIMS: This work aimed to assess at pilot scale the effect of chlorination and water flushing on 2-month-old drinking water biofilms and, above all, on biofilm-associated F-specific RNA bacteriophages MS2, GA and Qß. METHODS AND RESULTS: Chlorination (4 mg l(-1) ) was applied first with a hydrodynamic shear stress of 1 Pa and second with an increase in hydrodynamic shear stress to 10 Pa. Despite a rapid decrease in the number of biofilm bacteria and associated phages, infectious phages were still detected on surfaces after completion of the 150 min cleaning procedure. The resulting sequence of phage removal was: GA > Qߠ≫ MS2. CONCLUSIONS: The effect of chlorine on biofilm bacteria and biofilm-associated phages was limited to the upper layers of the biofilm and was not enhanced by an increase in hydrodynamic shear stress. A smaller decrease was observed for MS2 than for GA or Qß after completion of the cleaning procedure. SIGNIFICANCE AND IMPACT OF THE STUDY: The differences observed between the three phages suggest that the location of the viral particles in the biofilm, which is related to their surface properties, affects the efficiency of chlorine disinfection.


Assuntos
Bacteriófagos/fisiologia , Biofilmes/efeitos dos fármacos , Cloro/farmacologia , Desinfecção/métodos , Água Potável/virologia , Bacteriófagos/efeitos dos fármacos , Cloro/química , Desinfecção/instrumentação , Água Potável/química , Halogenação , Hidrodinâmica , Estresse Mecânico
14.
Phys Rev Lett ; 116(21): 216801, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27284667

RESUMO

Strong electron interactions can lead to a variety of broken-symmetry phases in monolayer graphene. In the quantum Hall regime, the interaction effect are enhanced by the formation of highly degenerate Landau levels, catalyzing the emergence of such phases. Recent magnetotransport studies show evidence that the ν=0 quantum Hall state of graphene is in an insulating canted antiferromagnetic phase with the Néel vector lying within the graphene plane. Here, we show that this Néel order can be detected via two-terminal spin transport. We find that a dynamic and inhomogeneous texture of the Néel vector can mediate nearly dissipationless (superfluid) transport of spin angular momentum polarized along the z axis, which could serve as a strong support for the antiferromagnetic scenario. The injection and detection of spin current in the ν=0 region can be achieved using the two spin-polarized edge channels of the |ν|=2 quantum Hall state. Measurements of the dependence of the spin current on the length of the ν=0 region would provide direct evidence for spin superfluidity.

15.
Phys Rev Lett ; 116(15): 156802, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27127979

RESUMO

Fermions and bosons are fundamental realizations of exchange statistics, which governs the probability for two particles being close to each other spatially. Anyons in the fractional quantum Hall effect are an example for exchange statistics intermediate between bosons and fermions. We analyze a mesoscopic setup in which two dilute beams of anyons collide with each other, and relate the correlations of current fluctuations to the probability of particles excluding each other spatially. While current correlations for fermions vanish, negative correlations for anyons are a clear signature of a reduced spatial exclusion as compared to fermions.

16.
J Virol Methods ; 224: 95-101, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26318917

RESUMO

In recent years, foodborne viruses, especially human noroviruses (NoV) and hepatitis A virus (HAV), have been increasingly reported as the causes of foodborne disease outbreaks. Soft red fruits, especially raspberries, have a high incidence among the types of food concerned. Due to low infectious doses and low concentrations of enteric viruses in food samples, it is necessary to have an efficient and rapid detection method to implement prevention measures. A standard method for virus detection and quantification in food, including raspberries (XP CEN ISO/TS 15216-1 and -2, 2013) is currently available. This method proposes a consensus detection approach by RT-real time PCR (RT-qPCR) but also a virus extraction procedure based on the elution-concentration principle. In this study, an alternative method of extraction in which RNAs are directly extracted from food matrices (based on direct RNA extraction) has been optimized. First, each step was improved to make it a highly rapid, specific and simple method. Second, the standard virus concentration method was compared with the optimized direct RNA extraction one. Human enteric viral surrogates, Murine Norovirus (MNV) and F-specific RNA bacteriophage GA, were selected according to their adhesion properties and resistance to pH close to our main targets (NoV and HAV). Raspberries were artificially contaminated using two different techniques (immersion and spotting) in order to define a recovery rate and the amounts of virus recovered. Results showed that the direct RNA extraction method revealed significantly higher viral extraction efficiency (46.2%) than the elution-concentration method (20.3%), with similar proportions of inhibitors for both. In the same way with inoculation by spotting, the best recovery rate of GA phage (39.7% against 0.7%) and MNV (42.8% against 0.5%) was observed by direct RNA extraction. For the lowest concentrations of phage and virus in the immersion bath, only the direct RNA extraction method allowed their recovery. Direct RNA extraction proved to be more effective (best recovery rate), faster (<8h) and simpler (fewer steps) than the one proposed in the CEN ISO standard method when it came to detecting enteric viruses on raspberries.


Assuntos
Contaminação de Alimentos , Microbiologia de Alimentos/métodos , Inocuidade dos Alimentos/métodos , Genoma Viral , Técnicas de Diagnóstico Molecular/métodos , Rubus/virologia , Vírus/isolamento & purificação , RNA Viral/isolamento & purificação , Sensibilidade e Especificidade , Fatores de Tempo , Vírus/genética
17.
Nat Commun ; 6: 7682, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26184854

RESUMO

The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.

18.
J Mycol Med ; 25(2): 123-9, 2015 Jun.
Artigo em Francês | MEDLINE | ID: mdl-25957712

RESUMO

INTRODUCTION: Mixed-species biofilms constitute a reservoir of infection for a group of bacteria and yeasts that coexist on the same support. Peripheral venous catheters make up a good surface for the attachment of microorganisms that promote biofilm formation and this requires complex strategies for antimicrobial treatments. OBJECTIVE: No such studies on formation mixed biofilms have ever been conducted in Algeria. Therefore, we evaluated the potential for the formation of mixed-species biofilms by Candida albicans and some bacterial species isolated from peripheral vascular catheters at the University Hospital of Tlemcen, in Algeria. RESULTS: The results obtained showed that C. albicans have the potential to form mixed biofilms with three bacteria (Enterobacter cloacae, Bordetella spp. and Serratia liquefaciens) isolated from the same catheter as the yeasts. The amount of biofilms produced varies depending on the species and the composition of the growth medium. Observations by scanning electron microscopy showed that the structure of the mixed biofilm depends on the surface support the biofilm was formed on, and varies with the species. CONCLUSION: A competition was noted between bacteria and yeasts; it depends on the composition of the medium and its pH, which both play an important role in promoting the dominance of one over the other.


Assuntos
Bactérias/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Dispositivos de Acesso Vascular/microbiologia , Argélia , Bordetella/crescimento & desenvolvimento , Bordetella/isolamento & purificação , Enterobacter cloacae/crescimento & desenvolvimento , Enterobacter cloacae/isolamento & purificação , Contaminação de Equipamentos/estatística & dados numéricos , Hospitais Universitários , Humanos , Técnicas Microbiológicas , Serratia liquefaciens/crescimento & desenvolvimento , Serratia liquefaciens/isolamento & purificação
19.
Phys Rev Lett ; 113(18): 186801, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25396385

RESUMO

We theoretically study transport in two-dimensional semimetals. Typically, electron and hole puddles emerge in the transport layer of these systems due to smooth fluctuations in the potential. We calculate the electric response of the electron-hole liquid subject to zero and finite perpendicular magnetic fields using an effective medium approximation and a complementary mapping on resistor networks. In the presence of smooth disorder and in the limit of a weak electron-hole recombination rate, we find for small but finite overlap of the electron and hole bands an abrupt upturn in resistivity when lowering the temperature but no divergence at zero temperature. We discuss how this behavior is relevant for several experimental realizations and introduce a simple physical explanation for this effect.

20.
Water Res ; 55: 175-84, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24607313

RESUMO

Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τw (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. When rapidly increasing the hydrodynamic constraint, biofilm removal was found to be dependent on a dual process of erosion and coalescence of the biofilm clusters. Indeed, 56% of the biofilm cells were removed with, concomitantly, a decrease in the number of the 50-300 µm(3) clusters and an increase in the number of the smaller (i.e., <50 µm(3)) and larger (i.e., >600 µm(3)) ones. Moreover, AFM evidenced the strengthening of the biofilm structure along with the doubling of the number of contact points, NC, per cluster volume unit following the hydrodynamic disturbance. This suggests that the compactness of the biofilm exopolymers increases with hydrodynamic stress. Shock chlorination removed cells (-75%) from the biofilm while reducing the volume of biofilm clusters. Oxidation stress resulted in a decrease in the cohesive strength profile of the remaining drinking water biofilms linked to a reduction in the number of contact points within the biofilm network structure in particular for the largest biofilm cluster volumes (>200 µm(3)). Changes in the cohesive strength of drinking water biofilms subsequent to cleaning/disinfection operations call into question the effectiveness of cleaning-in-place procedures. The combined alternating use of oxidation and shear stress sequences needs to be investigated as it could be an important adjunct to improving biofilm removal/reduction procedures.


Assuntos
Biofilmes/crescimento & desenvolvimento , Água Potável/microbiologia , Aderência Bacteriana/fisiologia , Hidrodinâmica , Microscopia de Força Atômica , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...