Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352438

RESUMO

Developmental and epileptic encephalopathies (DEEs) are a heterogenous group of epilepsies in which altered brain development leads to developmental delay and seizures, with the epileptic activity further negatively impacting neurodevelopment. Identifying the underlying cause of DEEs is essential for progress toward precision therapies. Here we describe a group of individuals with biallelic variants in DENND5A and determine that variant type is correlated with disease severity. We demonstrate that DENND5A interacts with MUPP1 and PALS1, components of the Crumbs apical polarity complex, which is required for both neural progenitor cell identity and the ability of these stem cells to divide symmetrically. Induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division during neural induction and have an inherent propensity to differentiate into neurons, and transgenic DENND5A mice, with phenotypes like the human syndrome, have an increased number of neurons in the adult subventricular zone. Disruption of symmetric cell division following loss of DENND5A results from misalignment of the mitotic spindle in apical neural progenitors. A subset of DENND5A is localized to centrosomes, which define the spindle poles during mitosis. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state and ultimately shortening the period of neurogenesis. This study provides a mechanism behind DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.

2.
J Med Genet ; 61(2): 186-195, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37734845

RESUMO

PURPOSE: Genome sequencing (GS) is expected to reduce the diagnostic gap in rare disease genetics. We aimed to evaluate a scalable framework for genome-based analyses 'beyond the exome' in regular care of patients with inherited retinal degeneration (IRD) or inherited optic neuropathy (ION). METHODS: PCR-free short-read GS was performed on 1000 consecutive probands with IRD/ION in routine diagnostics. Complementary whole-blood RNA-sequencing (RNA-seq) was done in a subset of 74 patients. An open-source bioinformatics analysis pipeline was optimised for structural variant (SV) calling and combined RNA/DNA variation interpretation. RESULTS: A definite genetic diagnosis was established in 57.4% of cases. For another 16.7%, variants of uncertain significance were identified in known IRD/ION genes, while the underlying genetic cause remained unresolved in 25.9%. SVs or alterations in non-coding genomic regions made up for 12.7% of the observed variants. The RNA-seq studies supported the classification of two unclear variants. CONCLUSION: GS is feasible in clinical practice and reliably identifies causal variants in a substantial proportion of individuals. GS extends the diagnostic yield to rare non-coding variants and enables precise determination of SVs. The added diagnostic value of RNA-seq is limited by low expression levels of the major IRD disease genes in blood.


Assuntos
Exoma , Oftalmopatias , Humanos , Estudos Prospectivos , Sequência de Bases , RNA , Oftalmopatias/diagnóstico , Oftalmopatias/genética
3.
Am J Hum Genet ; 110(8): 1414-1435, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541189

RESUMO

Heterogeneous nuclear ribonucleoprotein C (HNRNPC) is an essential, ubiquitously abundant protein involved in mRNA processing. Genetic variants in other members of the HNRNP family have been associated with neurodevelopmental disorders. Here, we describe 13 individuals with global developmental delay, intellectual disability, behavioral abnormalities, and subtle facial dysmorphology with heterozygous HNRNPC germline variants. Five of them bear an identical in-frame deletion of nine amino acids in the extreme C terminus. To study the effect of this recurrent variant as well as HNRNPC haploinsufficiency, we used induced pluripotent stem cells (iPSCs) and fibroblasts obtained from affected individuals. While protein localization and oligomerization were unaffected by the recurrent C-terminal deletion variant, total HNRNPC levels were decreased. Previously, reduced HNRNPC levels have been associated with changes in alternative splicing. Therefore, we performed a meta-analysis on published RNA-seq datasets of three different cell lines to identify a ubiquitous HNRNPC-dependent signature of alternative spliced exons. The identified signature was not only confirmed in fibroblasts obtained from an affected individual but also showed a significant enrichment for genes associated with intellectual disability. Hence, we assessed the effect of decreased and increased levels of HNRNPC on neuronal arborization and neuronal migration and found that either condition affects neuronal function. Taken together, our data indicate that HNRNPC haploinsufficiency affects alternative splicing of multiple intellectual disability-associated genes and that the developing brain is sensitive to aberrant levels of HNRNPC. Hence, our data strongly support the inclusion of HNRNPC to the family of HNRNP-related neurodevelopmental disorders.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Processamento Alternativo/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética
4.
Open Biol ; 13(7): 230040, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37433330

RESUMO

Pathogenic variants in SPART cause Troyer syndrome, characterized by lower extremity spasticity and weakness, short stature and cognitive impairment, and a severe mitochondrial impairment. Herein, we report the identification of a role of Spartin in nuclear-encoded mitochondrial proteins. SPART biallelic missense variants were detected in a 5-year-old boy with short stature, developmental delay and muscle weakness with impaired walking distance. Patient-derived fibroblasts showed an altered mitochondrial network, decreased mitochondrial respiration, increased mitochondrial reactive oxygen species and altered Ca2+ versus control cells. We investigated the mitochondrial import of nuclear-encoded proteins in these fibroblasts and in another cell model carrying a SPART loss-of-function mutation. In both cell models the mitochondrial import was impaired, leading to a significant decrease in different proteins, including two key enzymes involved in CoQ10 (CoQ) synthesis, COQ7 and COQ9, with a severe reduction in CoQ content, versus control cells. CoQ supplementation restored cellular ATP levels to the same extent shown by the re-expression of wild-type SPART, suggesting CoQ treatment as a promising therapeutic approach for patients carrying mutations in SPART.


Assuntos
Disfunção Cognitiva , Ubiquinona , Masculino , Humanos , Pré-Escolar , Ubiquinona/farmacologia , Proteínas Nucleares , Metabolismo Energético , Proteínas Mitocondriais/genética
5.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834931

RESUMO

SOX4 is a transcription factor with pleiotropic functions required for different developmental processes, such as corticogenesis. As with all SOX proteins, it contains a conserved high mobility group (HMG) and exerts its function via interaction with other transcription factors, such as POU3F2. Recently, pathogenic SOX4 variants have been identified in several patients who had clinical features overlapping with Coffin-Siris syndrome. In this study, we identified three novel variants in unrelated patients with intellectual disability, two of which were de novo (c.79G>T, p.Glu27*; c.182G>A p.Arg61Gln) and one inherited (c.355C>T, p.His119Tyr). All three variants affected the HMG box and were suspected to influence SOX4 function. We investigated the effects of these variants on transcriptional activation by co-expressing either wildtype (wt) or mutant SOX4 with its co-activator POU3F2 and measuring their activity in reporter assays. All variants abolished SOX4 activity. While our experiments provide further support for the pathogenicity of SOX4 loss-of-function (LOF) variants as a cause of syndromic intellectual disability (ID), our results also indicate incomplete penetrance associated with one variant. These findings will improve classification of novel, putatively pathogenic SOX4 variants.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Fatores de Transcrição SOXC , Humanos , Regulação da Expressão Gênica , Deficiência Intelectual/genética , Micrognatismo/genética , Fatores de Transcrição SOXC/genética , Fatores de Transcrição/metabolismo
6.
Genet Med ; 25(4): 100003, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36549593

RESUMO

PURPOSE: Transformer2 proteins (Tra2α and Tra2ß) control splicing patterns in human cells, and no human phenotypes have been associated with germline variants in these genes. The aim of this work was to associate germline variants in the TRA2B gene to a novel neurodevelopmental disorder. METHODS: A total of 12 individuals from 11 unrelated families who harbored predicted loss-of-function monoallelic variants, mostly de novo, were recruited. RNA sequencing and western blot analyses of Tra2ß-1 and Tra2ß-3 isoforms from patient-derived cells were performed. Tra2ß1-GFP, Tra2ß3-GFP and CHEK1 exon 3 plasmids were transfected into HEK-293 cells. RESULTS: All variants clustered in the 5' part of TRA2B, upstream of an alternative translation start site responsible for the expression of the noncanonical Tra2ß-3 isoform. All affected individuals presented intellectual disability and/or developmental delay, frequently associated with infantile spasms, microcephaly, brain anomalies, autism spectrum disorder, feeding difficulties, and short stature. Experimental studies showed that these variants decreased the expression of the canonical Tra2ß-1 isoform, whereas they increased the expression of the Tra2ß-3 isoform, which is shorter and lacks the N-terminal RS1 domain. Increased expression of Tra2ß-3-GFP were shown to interfere with the incorporation of CHEK1 exon 3 into its mature transcript, normally incorporated by Tra2ß-1. CONCLUSION: Predicted loss-of-function variants clustered in the 5' portion of TRA2B cause a new neurodevelopmental syndrome through an apparently dominant negative disease mechanism involving the use of an alternative translation start site and the overexpression of a shorter, repressive Tra2ß protein.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Processamento Alternativo , Proteínas de Ligação a RNA/genética , Células HEK293 , Isoformas de Proteínas/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
7.
J Med Genet ; 60(5): 498-504, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36241386

RESUMO

BACKGROUND: Cleidocranial dysplasia (CCD) is a rare skeletal dysplasia with significant clinical variability. Patients with CCD typically present with delayed closure of fontanels and cranial sutures, dental anomalies, clavicular hypoplasia or aplasia and short stature. Runt-related transcription factor 2 (RUNX2) is currently the only known disease-causing gene for CCD, but several studies have suggested locus heterogeneity. METHODS: The cohort consists of eight subjects from five unrelated families partially identified through GeneMatcher. Exome or genome sequencing was applied and in two subjects the effect of the variant was investigated at RNA level. RESULTS: In each subject a heterozygous pathogenic variant in CBFB was detected, whereas no genomic alteration involving RUNX2 was found. Three CBFB variants (one splice site alteration, one nonsense variant, one 2 bp duplication) were shown to result in a premature stop codon. A large intragenic deletion was found to delete exon 4, without affecting CBFB expression. The effect of a second splice site variant could not be determined but most likely results in a shortened or absent protein. Affected individuals showed similarities with RUNX2-related CCD, including dental and clavicular abnormalities. Normal stature and neurocognitive problems were however distinguishing features. CBFB encodes the core-binding factor ß subunit, which can interact with all RUNX proteins (RUNX1, RUNX2, RUNX3) to form heterodimeric transcription factors. This may explain the phenotypic differences between CBFB-related and RUNX2-related CCD. CONCLUSION: We confirm the previously suggested locus heterogeneity for CCD by identifying five pathogenic variants in CBFB in a cohort of eight individuals with clinical and radiographic features reminiscent of CCD.


Assuntos
Displasia Cleidocraniana , Subunidade beta de Fator de Ligação ao Core , Humanos , Sequência de Bases , Displasia Cleidocraniana/genética , Displasia Cleidocraniana/patologia , Códon sem Sentido , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/genética , Éxons
8.
Prenat Diagn ; 42(7): 901-910, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35574990

RESUMO

OBJECTIVES: To examine the diagnostic yield of trio exome sequencing in fetuses with multiple structural defects with no pathogenic findings in cytogenetic and microarray analyses. METHODS: We recruited 51 fetuses with two or more defects, non-immune fetal hydrops or fetal akinesia deformation syndrome|or fetal akinesia deformation sequence (FADS). Trio exome sequencing was performed on DNA from chorionic villi samples and parental blood. Detection of genomic variation and prioritization of clinically relevant variants was performed according to in-house standard operating procedures. RESULTS: Median maternal and gestational age was 32.0 years and 21.0 weeks, respectively. Forty-three (84.3%) fetuses had two or more affected organ systems. The remaining fetuses had isolated fetal hydrops or FADS. In total, the exome analysis established the genetic cause for the clinical abnormalities in 22 (43.1%, 95% CI 29.4%-57.8%) pregnancies. CONCLUSIONS: In fetuses with multiple defects, hydrops or FADS and normal standard genetic results, trio exome sequencing has the potential to identify genetic anomalies in more than 40% of cases.


Assuntos
Exoma , Hidropisia Fetal , Adulto , Feminino , Feto/diagnóstico por imagem , Humanos , Hidropisia Fetal/genética , Pais , Gravidez , Diagnóstico Pré-Natal/métodos , Ultrassonografia Pré-Natal , Sequenciamento do Exoma/métodos
9.
PLoS One ; 17(2): e0262770, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35130283

RESUMO

BACKGROUND: The present prospective study aimed at determining the impact of cell-free tumor DNA (ct-DNA), CA125 and HE4 from blood and ascites for quantification of tumor burden in patients with advanced high-grade serous epithelial ovarian cancer (EOC). METHODS: Genomic DNA was extracted from tumor FFPE and ct-DNA from plasma before surgery and on subsequent post-surgical days. Extracted DNA was subjected to hybrid-capture based next generation sequencing. Blood and ascites were sampled before surgery and on subsequent post-surgical days. 20 patients (10 undergoing complete resection (TR0), 10 undergoing incomplete resection (TR>0)) were included. RESULTS: The minor allele frequency (MAF) of TP53 mutations in ct-DNA of all patients with TR0 decreased significantly, compared to only one patient with TR>0. It was not possible to distinguish between patients with TR0 and patients with TR>0, using CA125 and HE4 from blood and ascites. CONCLUSIONS: Based upon the present findings, ct-DNA assessment in patients with high-grade serous EOC might help to better determine disease burden compared to standard tumor markers. Further studies should prospectively evaluate whether this enhancement of accuracy can help to optimize management of patients with EOC.


Assuntos
DNA Tumoral Circulante
10.
Am J Med Genet A ; 188(2): 624-627, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34643041

RESUMO

Aymé-Gripp syndrome is a multisystemic disorder caused by a heterozygous variation in the MAF gene (OMIM*177075). Key features are congenital cataracts, sensorineural hearing loss, and a characteristic facial appearance. In a proportion of individuals, pericardial effusion or pericarditis has been reported as part of the phenotypic spectrum. In the present case, a large persistent cytokine-enriched pericardial effusion was the main pre- and postnatal symptom that led to the clinical and later molecular diagnosis of Aymé-Gripp syndrome. In the postnatal course, the typical Aymé-Gripp syndrome-associated features bilateral cataracts and hearing loss were diagnosed. We propose that activating dominant variants in the cytokine-modulating transcription factor c-MAF causes cytokine-enriched pericardial effusions possibly representing a key feature of Aymé-Gripp syndrome.


Assuntos
Catarata , Perda Auditiva Neurossensorial , Derrame Pericárdico , Catarata/genética , Citocinas/genética , Fácies , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Humanos , Derrame Pericárdico/diagnóstico , Derrame Pericárdico/genética
11.
Int J Mol Sci ; 22(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065499

RESUMO

Mutations in POC1B are a rare cause of inherited retinal degeneration. In this study, we present a thorough phenotypic and genotypic characterization of three individuals harboring putatively pathogenic variants in the POC1B gene. All patients displayed a similar, slowly progressive retinopathy (cone dystrophy or cone-rod dystrophy) with normal funduscopy but disrupted outer retinal layers on optical coherence tomography and variable age of onset. Other symptoms were decreased visual acuity and photophobia. Whole genome sequencing revealed a novel homozygous frameshift variant in one patient. Another patient was shown to harbor a novel deep intronic variant in compound heterozygous state with a previously reported canonical splice site variant. The third patient showed a novel nonsense variant and a novel non-canonical splice site variant. We aimed to validate the effect of the deep intronic variant and the non-canonical splice site variant by means of in vitro splice assays. In addition, direct RNA analysis was performed in one patient. Splicing analysis revealed that the non-canonical splice site variant c.561-3T>C leads to exon skipping while the novel deep intronic variant c.1033-327T>A causes pseudoexon activation. Our data expand the genetic landscape of POC1B mutations and confirm the benefit of genome sequencing in combination with downstream functional validation using minigene assays for the analysis of putative splice variants. In addition, we provide clinical multimodal phenotyping of the affected individuals.


Assuntos
Proteínas de Ciclo Celular/genética , Distrofia de Cones/genética , Íntrons/genética , Mutação/genética , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Degeneração Retiniana/genética , Adolescente , Adulto , Éxons/genética , Feminino , Células HEK293 , Heterozigoto , Homozigoto , Humanos , Masculino , Retinose Pigmentar/genética , Virulência/genética , Adulto Jovem
12.
Diagnostics (Basel) ; 11(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809020

RESUMO

INTRODUCTION: Glycogen storage disease type VI (GSD VI) is a disorder of glycogen metabolism due to mutations in the PYGL gene. Patients with GSD VI usually present with hepatomegaly, recurrent hypoglycemia, and short stature. RESULTS: We report on two non-related Turkish patients with a novel homozygous splice site variant, c.345G>A, which was shown to lead to exon 2 skipping of the PYGL-mRNA by exome and transcriptome analysis. According to an in silico analysis, deletion Arg82_Gln115del is predicted to impair protein stability and possibly AMP binding. CONCLUSION: GSD VI is a possibly underdiagnosed disorder, and in the era of next generation sequencing, more and more patients with variants of unknown significance in the PYGL-gene will be identified. Techniques, such as transcriptome analysis, are important tools to confirm the pathogenicity and to determine therapeutic measures based on genetic results.

14.
Clin Cancer Res ; 24(6): 1337-1343, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29284707

RESUMO

Purpose: We sought to investigate the clinical response to MET inhibition in patients diagnosed with structural MET alterations and to characterize their functional relevance in cellular models.Experimental Design: Patients were selected for treatment with crizotinib upon results of hybrid capture-based next-generation sequencing. To confirm the clinical observations, we analyzed cellular models that express these MET kinase alterations.Results: Three individual patients were identified to harbor alterations within the MET receptor. Two patients showed genomic rearrangements, leading to a gene fusion of KIF5B or STARD3NL and MET One patient diagnosed with an EML4-ALK rearrangement developed a MET kinase domain duplication as a resistance mechanism to ceritinib. All 3 patients showed a partial response to crizotinib that effectively inhibits MET and ALK among other kinases. The results were further confirmed using orthogonal cellular models.Conclusions: Crizotinib leads to a clinical response in patients with MET rearrangements. Our functional analyses together with the clinical data suggest that these structural alterations may represent actionable targets in lung cancer patients. Clin Cancer Res; 24(6); 1337-43. ©2017 AACR.


Assuntos
Adenocarcinoma de Pulmão/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/metabolismo , Adulto , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Crizotinibe/farmacologia , Crizotinibe/uso terapêutico , Feminino , Duplicação Gênica , Rearranjo Gênico , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Estadiamento de Neoplasias , Proteínas de Fusão Oncogênica/química , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/química , Tomografia Computadorizada por Raios X
15.
Oncoimmunology ; 6(7): e1336594, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28811980

RESUMO

Immune evasion of tumors poses a major challenge for immunotherapy. For human papillomavirus (HPV)-induced malignancies, multiple immune evasion mechanisms have been described, including altered expression of antigen processing machinery (APM) components. These changes can directly influence epitope presentation and thus T-cell responses against tumor cells. To date, the APM had not been studied systematically in a large array of HPV+ tumor samples. Therefore in this study, systematic expression analysis of the APM was performed on the mRNA and protein level in a comprehensive collection of HPV16+ cell lines. Subsequently, HPV+ cervical tissue samples were examined by immunohistochemistry. ERAP1 (endoplasmic reticulum aminopeptidase 1) was the only APM component consistently altered - namely overexpressed - in HPV16+ tumor cell lines. ERAP1 was also found to be overexpressed in cervical intraepithelial neoplasia and cervical cancer samples; expression levels were increasing with disease stage. On the functional level, the influence of ERAP1 expression levels on HPV16 E7-derived epitope presentation was investigated by mass spectrometry and in cytotoxicity assays with HPV16-specific T-cell lines. ERAP1 overexpression did not cause a complete destruction of any of the HPV epitopes analyzed, however, an influence of ERAP1 overexpression on the presentation levels of certain HPV epitopes could be demonstrated by HPV16-specific CD8+ T-cells. These showed enhanced killing toward HPV16+ CaSki cells whose ERAP1 expression had been attenuated to normal levels. ERAP1 overexpression may thus represent a novel immune evasion mechanism in HPV-induced malignancies, in cases when presentation of clinically relevant epitopes is reduced by overactivity of this peptidase.

16.
J Thorac Oncol ; 12(10): 1503-1511, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28751246

RESUMO

INTRODUCTION: Detection of somatic genomic alterations in the plasma of patients with cancer ("liquid biopsy") are increasingly being used in the clinic. However, the concordance of alterations identified in liquid biopsies with those detected in cancer specimens is not routinely being determined. METHODS: We sought to systematically compare alterations found by a massively parallel sequencing liquid biopsy assay covering 39 genes (NEOliquid [NEO New Oncology GmbH, Köln, Germany]) with those identified through routine diagnostic testing in a certified central pathology laboratory in a cohort of patients with nonsquamous NSCLC. NEOliquid is based on enrichment of the genomic territory of interest by hybrid capture and is thus capable of detecting point mutations, small insertions and deletions, copy number alterations, and gene rearrangements/fusions in a single assay. RESULTS: In a cohort of 82 patients with matched blood/tissue samples, the concordance between NEOliquid and tissue-based routine testing was 98%, the sensitivity of NEOliquid was higher than 70%, and the specificity was 100%. Discordant cases included those with insufficient amounts of circulaating tumor DNA in plasma and cases in which known driver mutations (e.g., isocitrate dehydrogenase (NADP(+)), 1 systolic gene [IDH1] R132H, kinesin family member 5B gene [KIF5b-ret proto-oncogene [RET], or MNNG HOS Transforming gene [MET] exon 14) were found in the plasma but were not interrogated by routine tissue analyses. CONCLUSIONS: In summary, NEOliquid offers accurate and reliable detection of clinically relevant driver alterations in plasma of patients with cancer.


Assuntos
Genômica/métodos , Biópsia Líquida/métodos , Neoplasias/sangue , Neoplasias/diagnóstico , Feminino , Humanos , Masculino , Neoplasias/genética , Proto-Oncogene Mas
17.
Proc Natl Acad Sci U S A ; 111(13): 4886-91, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24707046

RESUMO

The protein tyrosine kinase Ephrin type-B receptor 3 (EPHB3) counteracts tumor-cell dissemination by regulating intercellular adhesion and repulsion and acts as tumor/invasion suppressor in colorectal cancer. This protective mechanism frequently collapses at the adenoma-carcinoma transition due to EPHB3 transcriptional silencing. Here, we identify a transcriptional enhancer at the EPHB3 gene that integrates input from the intestinal stem-cell regulator achaete-scute family basic helix-loop-helix transcription factor 2 (ASCL2), Wnt/ß-catenin, MAP kinase, and Notch signaling. EPHB3 enhancer activity is highly variable in colorectal carcinoma cells and precisely reflects EPHB3 expression states, suggesting that enhancer dysfunction underlies EPHB3 silencing. Interestingly, low Notch activity parallels reduced EPHB3 expression in colorectal carcinoma cell lines and poorly differentiated tumor-tissue specimens. Restoring Notch activity reestablished enhancer function and EPHB3 expression. Although essential for intestinal stem-cell maintenance and adenoma formation, Notch activity seems dispensable in colorectal carcinomas. Notch activation even promoted growth arrest and apoptosis of colorectal carcinoma cells, attenuated their self-renewal capacity in vitro, and blocked tumor growth in vivo. Higher levels of Notch activity also correlated with longer disease-free survival of colorectal cancer patients. In summary, our results uncover enhancer decommissioning as a mechanism for transcriptional silencing of the EPHB3 tumor suppressor and argue for an antitumorigenic function of Notch signaling in advanced colorectal cancer.


Assuntos
Neoplasias Colorretais/genética , Elementos Facilitadores Genéticos/genética , Inativação Gênica , Receptor EphB3/genética , Transcrição Gênica , Animais , Apoptose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular/genética , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptor EphB3/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...